7.已知函數(shù)f(x)(x∈R)滿足f(x)+f(-x)=2若函數(shù)y=f(x)與函數(shù)y=$\frac{1+x}{x}$的圖象的交點(diǎn)依次為(x1,y1),(x2,y2),…(xi,yi)則$\sum_{i=1}^{n}({x}_{i}+{y}_{i})$=(  )
A.0B.nC.2nD.4n

分析 由條件可得f(x)+f(-x)=2,即有f(x)關(guān)于點(diǎn)(0,1)對(duì)稱(chēng),又函數(shù)y=$\frac{1+x}{x}$,即y=1+$\frac{1}{x}$的圖象關(guān)于點(diǎn)(0,1)對(duì)稱(chēng),即有(x1,y1)為交點(diǎn),即有(-x1,2-y1)也為交點(diǎn),計(jì)算即可得到所求和.

解答 解:函數(shù)f(x)(x∈R)滿足f(-x)=2-f(x),
即為f(x)+f(-x)=2,
可得f(x)關(guān)于點(diǎn)(0,1)對(duì)稱(chēng),
函數(shù)y=$\frac{x+1}{x}$,即y=1+$\frac{1}{x}$的圖象關(guān)于點(diǎn)(0,1)對(duì)稱(chēng),
即有(x1,y1)為交點(diǎn),即有(-x1,2-y1)也為交點(diǎn),
(x2,y2)為交點(diǎn),即有(-x2,2-y2)也為交點(diǎn),

則有$\sum_{i=1}^{n}({x}_{i}+{y}_{i})$=(xi+yi)=(x1+y1)+(x2+y2)+…+(xn+yn
=$\frac{1}{2}$[(x1+y1)+(-x1+2-y1)+(x2+y2)+(-x2+2-y2)+…+(xn+yn)+(-xn+2-yn)]
=n.
故選:B.

點(diǎn)評(píng) 本題考查抽象函數(shù)的運(yùn)用:求和,考查函數(shù)的對(duì)稱(chēng)性的運(yùn)用,以及化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.給出下列四個(gè)命題:
①函數(shù)y=|x|與函數(shù)$y={(\sqrt{x})^2}$表示同一個(gè)函數(shù);
②奇函數(shù)的圖象一定通過(guò)直角坐標(biāo)系的原點(diǎn);
③若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,4];
④函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移一個(gè)單位得到;
⑤設(shè)函數(shù)f(x)是在區(qū)間[a,b]上圖象連續(xù)的函數(shù),且f(a)•f(b)<0,則方程f(x)=0在區(qū)間[a,b]上至少有一實(shí)根;
其中正確命題的序號(hào)是④⑤.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x-2≤0\\ x+y-2≥0\end{array}\right.$,則z=x-2y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合U=R,A={x|(x-2)(x+1)≤0},B={x|0≤x<3},則∁U(A∪B)=( 。
A.(-1,3)B.(-∞,-1]∪[3,+∞)C.[-1,3]D.(-∞,-1)∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知在空間四邊形OABC中,$\overrightarrow{OA}=\overrightarrow a,\overrightarrow{OB}=\overrightarrow b,\overrightarrow{OC}=\overrightarrow c$,點(diǎn)M在OA上,且OM=3MA,N為BC中點(diǎn),用$\overrightarrow a,\overrightarrow b,\overrightarrow c$表示$\overrightarrow{MN}$,則$\overrightarrow{MN}$等于-$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.函數(shù)f(x)=[x2-(n+1)x+1]ex-1,g(x)=$\frac{f(x)}{{x}^{2}+1}$,n∈R.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)f(x)在R上單調(diào)遞增時(shí),證明:對(duì)任意x1,x2∈R且x1≠x2,$\frac{g({x}_{2})+g({x}_{1})}{2}$>$\frac{g({x}_{2})-g({x}_{1})}{{x}_{2}-{x}_{1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{1-x}{ax}$+lnx在(1,+∞)上是增函數(shù),且a>0.
(Ⅰ)求a的取值范圍;
(Ⅱ)若b>0,試說(shuō)明$\frac{1}{a+b}$<ln$\frac{a+b}$<$\frac{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=ex+e-x,則y=f′(x)的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合M={0,1,2},N={x|-1≤x≤1,x∈Z},則M∩N為( 。
A.(0,1)B.[0,1]C.{0,1}D.

查看答案和解析>>

同步練習(xí)冊(cè)答案