(本題滿分15分) 如圖,四邊形中,為正三角形,,,交于點.將沿邊折起,使點至點,已知與平面所成的角為,且點在平面內(nèi)的射影落在內(nèi).

(Ⅰ)求證:平面;

(Ⅱ)若已知二面角的余弦值為,求的大小.

 

【答案】

(Ⅰ)只需證、即可;(Ⅱ)

【解析】

試題分析:(Ⅰ)易知的中點,

,又,

,平面

所以平面   (5分)

(Ⅱ)方法一:以軸,軸,過垂直于

平面向上的直線為軸建立如圖所示空間

直角坐標(biāo)系,則,       (7分)

易知平面的法向量為 (8分)

設(shè)平面的法向量為

則由得,

解得,,令,則 (11分)

解得,,即,即

,∴   故.(15分)   

考點:線面垂直的判定定理;線面角;二面角的求法。

點評:用綜合法求二面角,往往需要作出平面角,這是幾何中一大難點,而用向量法求解二面角無需作出二面角的平面角,只需求出平面的法向量,經(jīng)過簡單運算即可,從而體現(xiàn)了空間向量的巨大作用.二面角的向量求法: ①若AB、CD分別是二面的兩個半平面內(nèi)與棱垂直的異面直線,則二面角的大小就是向量的夾角; ②設(shè)分別是二面角的兩個面α,β的法向量,則向量的夾角(或其補(bǔ)角)的大小就是二面角的平面角的大小。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省如皋市五校高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題

((本題滿分15分)
某有獎銷售將商品的售價提高120元后允許顧客有3次抽獎的機(jī)會,每次抽獎的方法是在已經(jīng)設(shè)置并打開了程序的電腦上按“Enter”鍵,電腦將隨機(jī)產(chǎn)生一個                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整數(shù)數(shù)作為號碼,若該號碼是3的倍數(shù)則顧客獲獎,每次中獎的獎金為100元,運用所學(xué)的知識說明這樣的活動對商家是否有利。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省招生適應(yīng)性考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分15分)設(shè)函數(shù)

(Ⅰ)若函數(shù)上單調(diào)遞增,在上單調(diào)遞減,求實數(shù)的最大值;

(Ⅱ)若對任意的,都成立,求實數(shù)的取值范圍.

注:為自然對數(shù)的底數(shù).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期初摸底文科數(shù)學(xué) 題型:解答題

(本題滿分15分)已知直線與曲線相切

1)求b的值;

2)若方程上恰有兩個不等的實數(shù)根,求

①m的取值范圍;

②比較的大小

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題

(本題滿分15分)已知拋物線),焦點為,直線交拋物線、兩點,是線段的中點,

  過軸的垂線交拋物線于點,

  (1)若拋物線上有一點到焦點的距離為,求此時的值;

  (2)是否存在實數(shù),使是以為直角頂點的直角三角形?若存在,求出的值;若不存在,說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省六校高三第一次聯(lián)考文科數(shù)學(xué) 題型:解答題

(本題滿分15分)

已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)設(shè),若上不單調(diào)且僅在處取得最大值,求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案