【題目】已知函數(shù),下列關(guān)于函數(shù)的單調(diào)性說(shuō)法正確的是( )
A.函數(shù)在上不具有單調(diào)性
B.當(dāng)時(shí),在上遞減
C.若的單調(diào)遞減區(qū)間是,則a的值為
D.若在區(qū)間上是減函數(shù),則a的取值范圍是
E.在區(qū)間上不可能是減函數(shù)
【答案】BD
【解析】
對(duì)二次項(xiàng)系數(shù)分類討論,當(dāng)時(shí),,在上是減函數(shù);當(dāng)時(shí),函數(shù)是二次函數(shù),根據(jù)開(kāi)口方向,和對(duì)稱軸的位置,可判斷其單調(diào)性,或由單調(diào)性,求參數(shù),即可得出結(jié)論.
當(dāng)時(shí),,在上是減函數(shù),A錯(cuò)誤;
當(dāng)時(shí),,其單調(diào)遞減區(qū)間是,
因此在上遞減,B正確;
由的單調(diào)遞減區(qū)間是得,
a的值不存在,C錯(cuò)誤;
在D中,當(dāng)時(shí),,在上是減函數(shù);
當(dāng)時(shí),由,得,
所以a的取值范圍是,D正確;
由在區(qū)間上是減函數(shù)得,
解得,因此在區(qū)間上可能是減函數(shù),E錯(cuò)誤.
故選:BD
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一塊長(zhǎng)方形區(qū)域,,,在邊的中點(diǎn)處有一個(gè)可轉(zhuǎn)動(dòng)的探照燈,其照射角始終為,設(shè),探照燈照射在長(zhǎng)方形內(nèi)部區(qū)域的面積為.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)時(shí),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)任意,,,給出下列命題:
①“”是“”的充要條件;
②“是無(wú)理數(shù)”是“是無(wú)理數(shù)”的充要條件;
③“”是“”的必要條件,
④“”是“”的充分條件.
其中真命題的個(gè)數(shù)為().
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)滿足,且當(dāng)時(shí),,對(duì)任意R,均有.
(1)求證:;
(2)求證:對(duì)任意R,恒有;
(3)求證:是R上的增函數(shù);
(4)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的右焦點(diǎn)為,過(guò)點(diǎn)作與軸垂直的直線交橢圓于,兩點(diǎn)(點(diǎn)在第一象限),過(guò)橢圓的左頂點(diǎn)和上頂點(diǎn)的直線與直線交于點(diǎn),且滿足,設(shè)為坐標(biāo)原點(diǎn),若,,則該橢圓的離心率為( )
A. B. C. 或 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了月日至月日的每天晝夜溫差與實(shí)驗(yàn)室每天每顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 月日 | 月日 | 月日 | 月日 | 月日 |
溫差 | |||||
發(fā)芽數(shù)(顆) |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的組數(shù)據(jù)恰好是不相鄰天數(shù)據(jù)的概率;
(2)若選取的是月日與月日的兩組數(shù)據(jù),請(qǐng)根據(jù)月日至月日的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過(guò)一段時(shí)間后用某種科學(xué)方法測(cè)算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:
記為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計(jì)值為.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com