【題目】如圖,一塊長方形區(qū)域,,在邊的中點處有一個可轉(zhuǎn)動的探照燈,其照射角始終為,設(shè),探照燈照射在長方形內(nèi)部區(qū)域的面積為.

1)求關(guān)于的函數(shù)關(guān)系式;

2)當(dāng)時,求的最大值.

【答案】1S2

【解析】

1)根據(jù)條件討論α的范圍,結(jié)合三角形的面積公式進行求解即可.

2)利用兩角和差的三角公式進行化簡,結(jié)合基本不等式的性質(zhì)進行轉(zhuǎn)化求解即可.

1

OA1,即AEtanα

HOFα,

HFtanα),

AOE,HOF得面積分別為tanαtanα,

則陰影部分的面積S1,

當(dāng)∈[,)時,EBH上,F在線段CH上,如圖②,

EH,FH,則EF

S),

,;

同理當(dāng);

S

2)當(dāng)時,S121+tanα

0≤tanα≤1,即1≤1+tanα≤2

1+tanα22,

當(dāng)且僅當(dāng)1+tanα,即1+tanα時取等號,

,即S的最大值為2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)的一種電器的固定成本(即固定投資)為0.5萬元,每生產(chǎn)一臺這種電器還需可變成本(即另增加投資)25元,市場對這種電器的年需求量為5百臺.已知這種電器的銷售收入R與銷售量t的關(guān)系可用拋物線表示,如圖.

(注:銷售量的單位:百臺,銷售收入與純收益的單位:萬元,生產(chǎn)成本=固定成本+可變成本,精確到1臺和0.01萬元)

1)寫出銷售收入R與銷售量t之間的函數(shù)關(guān)系式;

2)若銷售收入減去生產(chǎn)成本為純收益,寫出純收益與銷售量的函數(shù)關(guān)系式,并求銷售量是多少時,純收益最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,求函數(shù)圖象在點處的切線方程;

(2)當(dāng)時,討論函數(shù)的單調(diào)性

(3)是否存在實數(shù),對任意的 恒成立?若存在,求出的取值范圍:若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是梯形,,,底面的中點.

()證明:;

()與平面所成角的大小為,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標系的原點為極點,以軸的正半軸為極軸,且兩個坐標系取相等的長度單位,已知直線的參數(shù)方程為為參數(shù),),曲線的極坐標方程為

(1)若,求直線的普通方程和曲線的直角坐標方程;

(2)設(shè)直線與曲線相交于,兩點,當(dāng)變化時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)若處取到極值,求的值;

(2)若上恒成立,求的取值范圍;

(3)求證:當(dāng)時, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,角A,B,C對邊的邊長分別是a,b,c,且acosB+cosC)=b+c

1)求證:A;

2)若△ABC外接圓半徑為1,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知傾斜角為的直線經(jīng)過拋物線的焦點,與拋物線相交于兩點,且.

(Ⅰ)求拋物線的方程;

(Ⅱ)過點的兩條直線、分別交拋物線于點、,線段的中點分別為、.如果直線的傾斜角互余,求證:直線經(jīng)過一定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),下列關(guān)于函數(shù)的單調(diào)性說法正確的是(

A.函數(shù)上不具有單調(diào)性

B.當(dāng)時,上遞減

C.的單調(diào)遞減區(qū)間是,則a的值為

D.在區(qū)間上是減函數(shù),則a的取值范圍是

E.在區(qū)間上不可能是減函數(shù)

查看答案和解析>>

同步練習(xí)冊答案