16.設(shè)a=21.5,b=log${\;}_{\frac{1}{2}}$1.5,c=($\frac{1}{2}$)1.5,則a,b,c大小關(guān)系( 。
A.a>c>bB.c>a>bC.a>b>cD.b>a>c

分析 根據(jù)對(duì)數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì)判斷大小即可.

解答 解:a=21.5>2,
b=log${\;}_{\frac{1}{2}}$1.5<0,
0<c=($\frac{1}{2}$)1.5<1,
則a>c>b,
故選:A.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)、指數(shù)的大小比較,考查指數(shù)函數(shù)以及對(duì)數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若圓x2+(y-2)2=1與橢圓$\frac{x^2}{m}$+$\frac{y^2}{n}$=1的三個(gè)交點(diǎn)構(gòu)成等邊三角形,則該橢圓的離心率的值為$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F,離心率為$\frac{\sqrt{3}}{3}$,過(guò)點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長(zhǎng)為$\frac{4\sqrt{3}}{3}$,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.(1)求不等式a2x-1>ax+2(a>0,且a≠1)中x的取值范圍(用集合表示).
(2)已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=$\sqrt{x}$+1,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知α為銳角,且cos($\frac{π}{2}$+α)=-$\frac{3}{5}$,則tanα=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)f(x)=2|x|的定義域?yàn)閇a,b],值域?yàn)閇1,4],方程b=g(a)表示的圖形可以是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知冪函數(shù)f(x)=(m2-3m+3)xm+1為偶函數(shù),g(x)=loga[f(x)-ax](a>0且a≠1).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若g(x)在區(qū)間(2,3)上為增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=alnx+ax2+bx,(a,b∈R).
(1)設(shè)a=1,f(x)在x=1處的切線過(guò)點(diǎn)(2,6),求b的值;
(2)設(shè)b=a2+2,求函數(shù)f(x)在區(qū)間[1,4]上的最大值;
(3)定義:一般的,設(shè)函數(shù)g(x)的定義域?yàn)镈,若存在x0∈D,使g(x0)=x0成立,則稱x0為函數(shù)g(x)的不動(dòng)點(diǎn).設(shè)a>0,試問(wèn)當(dāng)函數(shù)f(x)有兩個(gè)不同的不動(dòng)點(diǎn)時(shí),這兩個(gè)不動(dòng)點(diǎn)能否同時(shí)也是函數(shù)f(x)的極值點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=ex,g(x)=$\frac{1}{2}$x2+x+1,命題p:?x≥0,f(x)≥g(x),則( 。
A.p是假命題,¬p:?x<0,f(x)<g(x)B.p是假命題,¬p:?x≥0,f(x)<g(x)
C.p是真命題,¬p:?x<0,f(x)<g(x)D.p是真命題,¬p:?x≥0,f(x)<g(x)

查看答案和解析>>

同步練習(xí)冊(cè)答案