5.已知函數(shù)f(x)=ax2+bx+c(a>0,b,c∈R).
(1)若函數(shù)f(x)的最小值是f(-1)=0,且c=1,
①求a、b的值;
②解不等式f(x)>4.
(2)若a=1,c=0,且-1≤f(x)≤1在區(qū)間(0,1]上恒成立,試求b的取值范圍.

分析 分離參數(shù)b,利用函數(shù)的單調(diào)性求出最值,最終求出b的范圍.

解答 解:(1)①$-\frac{2a}=-1,\frac{4ac-^{2}}{4a}=0$
∴$;c=1,\\;a=1,b=2$a=1,b=2,
②∵(x+1)2>4,
∴x>1或x<-3.
(2)由題意知,函數(shù)f(x)=x2+bx,-1≤x2+bx≤1在區(qū)間(0,1]上恒成
即 b≤$\frac{1}{x}-x$且     $b≥-\frac{1}{x}-x$在(0,1]上恒成立.
根據(jù)單調(diào)性可得:$;y=\frac{1}{x}-x$ 的最小值為0,$;y=-\frac{1}{x}-x$ 的最大值為-2.
∴-2≤b≤0,
故b的取值范圍為[-2,0].

點(diǎn)評(píng) 本題主要考查求函數(shù)的解析式,二次函數(shù)的性質(zhì)應(yīng)用,函數(shù)的恒成立問題,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年江西吉安一中高二上段考一數(shù)學(xué)(理)試卷(解析版) 題型:填空題

過點(diǎn)且與直線垂直的直線方程為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,△PAD是等邊三角形,四邊形ABCD是平行四邊形,∠ADC=120°,AB=2AD.
(1)求證:平面PAD⊥平面PBD;
(2)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=x-$\frac{1}{x}$-2mlnx(m∈R),討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,四棱錐P-ABCD中,底面ABCD是梯形,AB∥CD,∠DAB=60°,AB=AD=2CD,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點(diǎn).
(Ⅰ)求證:AD⊥PB;
(Ⅱ)求證:DM∥平面PCB;
(Ⅲ)求PB與平面ABCD所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角梯形ABCD中,AB∥DC,AD⊥AB,DC=3,AB=2,AD=1,AE=EB,DF=1,現(xiàn)把它沿FE折起,得到如圖所示幾何體,連接DB,AB,DC,使DC=$\sqrt{5}$,
(1)求證:面DBC⊥面DFB;
(2)判斷是否在DC上存在一點(diǎn)H,使二面角E-BH-C的余弦值為-$\frac{{\sqrt{30}}}{6}$,若存在,確定點(diǎn)H的位置,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖是一個(gè)幾何體的三視圖(單位:cm),則這個(gè)幾何體的表面積是$18+2\sqrt{3}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.把4封不同的信投進(jìn)5個(gè)不同的郵箱中,則總共投法的種數(shù)為( 。
A.20B.$A_5^4$C.45D.54

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在等差數(shù)列{an}中,若a3-a2=-2,a7=-2,則a9=-6.

查看答案和解析>>

同步練習(xí)冊(cè)答案