函數(shù)y=log2(1-x)的圖象是( 。
A、
B、
C、
D、
考點(diǎn):函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,可先求出函數(shù)的定義域,根據(jù)所得的定義域考查四個(gè)選項(xiàng)中的圖象排除A,B,再由函數(shù)的單調(diào)性排除D即可得出正確結(jié)論
解答: 解:由題意可得,1-x>0,得x<1,
即函數(shù)的定義域是{x|x<1},由此可排除A,B兩個(gè)選項(xiàng)
又由y=log2(1-x)知,此函數(shù)在定義域上是減函數(shù),故排除D
故選C
點(diǎn)評(píng):本題考查對(duì)數(shù)函數(shù)的圖象與性質(zhì)、數(shù)形結(jié)合,解題時(shí)應(yīng)充分利用對(duì)數(shù)函數(shù)的圖象,掌握其的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線L:y=-2x+6和點(diǎn)A(1,-1),過點(diǎn)A作直線L1與直線L相交于B點(diǎn),且|AB|=5,求直線L1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2014x+1+2013
2014x+1
的最大值為M,最小值為N,那么M+N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程x2+2(m+1)x+m-4=0有實(shí)根,且一個(gè)大于2,一個(gè)小于2,則m取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},a1=1,a2=2,an•an+1•an+2=an+an+1+an+2,且an+1an+2≠1,則a1+a2+a3=
 
,S2013=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程x3+3x-3=0的解在區(qū)間( 。
A、(-1,0)
B、(0,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={a+2,(a+1)2,a2+3a+3},若1∈A,則a的所有可能取值構(gòu)成的集合為( 。
A、{-1,0}
B、{-2,-1,0}
C、{0}
D、{-2,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=|x2-6x+8|-k只有兩個(gè)零點(diǎn),則( 。
A、k=0B、k>1
C、0≤k<1D、k>1,或k=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2sinx+1+a是一個(gè)奇函數(shù).
(1)求a的值和f(x)的值域;
(2)設(shè)ω>0,若y=f(ωx)在區(qū)間[-
π
2
,
3
]是增函數(shù),求ω的取值范圍;
(3)設(shè)|θ|<
π
2
,若對(duì)x取一切實(shí)數(shù),不等式4+f(x+θ)f(x-θ)>2f(x)都成立,求θ的取值范圍.(公式sin(A+B)=sinAcosB+cosAsinB)

查看答案和解析>>

同步練習(xí)冊(cè)答案