12.在等比數(shù)列{an}中,a1=2,a4=16則公比q為( 。
A.2B.3C.4D.8

分析 利用等比數(shù)列的通項公式列出方程,由此能求出公比.

解答 解:∵在等比數(shù)列{an}中,a1=2,a4=16,
∴${a}_{4}=2{q}^{3}=16$,
解得公比q=2.
故選:A.

點評 本題考查等比數(shù)列的公比的求法,是基礎題,解題時要認真審題,注意等比數(shù)列的性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.正四面體ABCD的體積為V,M是正四面體ABCD內部的點,若“${V_{M-ABC}}≥\frac{1}{4}V$”的事件為X,則概率P(X)為( 。
A.$\frac{17}{32}$B.$\frac{37}{64}$C.$\frac{19}{32}$D.$\frac{27}{64}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.定義函數(shù)${f_a}(x)={4^x}-(a+1)•{2^x}+a$,其中x為自變量,a為常數(shù).
(I)若當x∈[0,2]時,函數(shù)fa(x)的最小值為一1,求a之值;
(II)設全集U=R,集A={x|f3(x)≥fa(0)},B={x|fa(x)+fa(2-x)=f2(2)},且(∁UA)∩B≠∅中,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若直線l經過點(a-2,-1)和(-a-2,1),且與直線2x+3y+1=0垂直,則實數(shù)a的值為(  )
A.-$\frac{2}{3}$B.-$\frac{3}{2}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如圖,網格上小正方形的邊長為1,粗線畫出的是一個三棱錐的三視圖,該三棱錐的外接球的體積記為V1,俯視圖繞底邊AB所在直線旋轉一周形成的幾何體的體積記為V2,則V1:V2( 。
A.4$\sqrt{2}$B.2$\sqrt{2}$C.4D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知x>1,則不等式x+$\frac{1}{x-1}$的最小值為( 。
A.4B.2C.1D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在銳角△ABC中,a,b,c分別是A,B,C的對邊,a=2bsinA.
(1)求B的大;
(2)若a=$\sqrt{2}$,b=1,求A的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.菱形ABCD中,E,F(xiàn)分別是AD,CD中點,若∠BAD=60°,AB=2,則$\overrightarrow{AF}$•$\overrightarrow{BE}$=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知f(x)=2x+log2x,則f'(1)=2ln2+$\frac{1}{ln2}$.

查看答案和解析>>

同步練習冊答案