分析 (1)根據(jù)比例關(guān)系式求出h關(guān)于x的解析式即可;(2)設(shè)該正四棱柱的表面積為y,得到關(guān)系式y(tǒng)=2x2+4xh,根據(jù)二次函數(shù)的性質(zhì)求出y的最大值即可.
解答 解:(1)根據(jù)相似性可得:$\frac{{\frac{{\sqrt{2}}}{2}x}}{4}=\frac{{8\sqrt{2}-h}}{{8\sqrt{2}}}$…(3分)
解得:$h=8\sqrt{2}-2x(0<x<4\sqrt{2})$…(6分)(沒范圍扣1分)
(2)設(shè)該正四棱柱的表面積為y.則有關(guān)系式y(tǒng)=2x2+4xh
=$2{x^2}+4x(8\sqrt{2}-2x)$
=$-6{x^2}+32\sqrt{2}x$
=$-6{(x-\frac{8}{3}\sqrt{2})^2}+\frac{256}{3}$…(9分)
因?yàn)?0<x<4\sqrt{2}$,所以當(dāng)$x=\frac{8}{3}\sqrt{2}$時(shí),${y_{max}}=\frac{256}{3}$…(11分)
故當(dāng)正四棱柱的底面邊長為$\frac{8}{3}\sqrt{2}$時(shí),此正四棱柱的表面積最大值為$\frac{256}{3}$…(12分)
點(diǎn)評 本題考查了數(shù)形結(jié)合思想,考查二次函數(shù)的性質(zhì)以及求函數(shù)的最值問題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 橫坐標(biāo)向左平動(dòng)$\frac{π}{4}$個(gè)單位長度 | B. | 橫坐標(biāo)向右平移$\frac{π}{4}$個(gè)單位長度 | ||
C. | 橫坐標(biāo)向左平移$\frac{π}{8}$個(gè)單位長度 | D. | 橫坐標(biāo)向右平移$\frac{π}{8}$個(gè)單位長度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 如果m?α,n?α,m、n是不在任何同一個(gè)平面內(nèi)的直線,那么n∥α | |
B. | 如果m?α,n?α,m、n是不在任何同一個(gè)平面內(nèi)的直線,那么n與α相交 | |
C. | 如果m∥α,n∥α,m、n共面,那么m∥n | |
D. | 如果m?α,n∥α,m、n共面,那么m∥n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com