(2012•安徽)命題“存在實數(shù)x,,使x>1”的否定是( 。
分析:根據(jù)存在命題(特稱命題)否定的方法,可得結(jié)果是一個全稱命題,結(jié)合已知易得答案.
解答:解:∵命題“存在實數(shù)x,使x>1”的否定是
“對任意實數(shù)x,都有x≤1”
故選C
點評:本題以否定命題為載體考查了特稱命題的否定,熟練掌握全(特)稱命題的否定命題的格式和方法是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)下列命題正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)給出以下命題:
①函數(shù)f(x)=|log2x2|既無最大值也無最小值;
②函數(shù)f(x)=|x2-2x-3|的圖象關(guān)于直線x=1對稱;
③若函數(shù)f(x)的定義域為(0,1),則函數(shù)f(x2)的定義域為(-1,1);
④若函數(shù)f(x)滿足|f(-x)|=|f(x)|,則函數(shù)f(x)或是奇函數(shù)或是偶函數(shù);
⑤設(shè)f(x)與g(x)是定義在R上的兩個函數(shù),若對任意x1,x2∈R(x1≠x2)有|f(x1)-f(x2)|>|g(x1)-g(x2)|恒成立,且函數(shù)f(x)在R上遞增,則函數(shù)h(x)=f(x)-g(x)在R上遞增.
其中正確的命題是
②④⑤
②④⑤
(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)下列命題中,真命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)設(shè)a∈R,f(x)=cosx(asinx-cosx)+sin2x的定義域是[
π
4
,
11
24
π],f(
π
4
)=
3
.給出下列幾個命題:
①f(x)在x=
π
4
處取得小值;
[
5
12
π,
11
24
π]
是f(x)的一個單調(diào)遞減區(qū)間;
③f(x)的最大值為2;
④使得f(x)取得最大值的點僅有一個x=
π
3

其中正確命題的序號是
②③④
②③④
.(將你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

同步練習(xí)冊答案