19.某人午覺醒來,發(fā)現(xiàn)表停了,他打開收音機,想聽電臺報時,則他等待時間大于10分鐘的概率為( 。
A.$\frac{1}{6}$B.$\frac{5}{6}$C.$\frac{1}{10}$D.$\frac{9}{10}$

分析 由電臺整點報時的時刻是任意的知這是一個幾何概型,電臺整點報時知事件總數(shù)包含的時間長度是60,而他等待的時間大于10分鐘的事件包含的時間長度是50,代入數(shù)據(jù),得到結(jié)果

解答 解:由題意知這是一個幾何概型,
∵電臺整點報時,
∴事件總數(shù)包含的時間長度是60,
∵滿足他等待的時間大于10分鐘的事件包含的時間長度是50,
由幾何概型公式得到P=$\frac{50}{60}=\frac{5}{6}$,
故選:B.

點評 本題考查了幾何概型的概率求法;一般的,先要判斷該概率模型,如果是幾何概型,它的結(jié)果要通過長度、面積或體積之比來得到.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.設等差數(shù)列{an}的前n項和為Sn,若a4,a6是方程x2-18x+p=0的兩根,那么S9=(  )
A.9B.81C.5D.45

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知x>1,則函數(shù)$y=\frac{{{x^2}+x+1}}{x-1}$的最小值為$3+2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若變量x,y滿足條件$\left\{{\begin{array}{l}{{x^2}+{y^2}-2x-2y+1≤0}\\{|x-1|-y≤0}\end{array}}\right.$,則z=2x+y最小值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,某污水處理廠要在一個矩形ABCD的池底水平鋪設污水凈化管道(直角△EFG,E是直角頂點)來處理污水,管道越長,污水凈化效果越好,設計要求管道的接口E是AB的中點,F(xiàn)、G分別落在AD、BC上,且AB=20m,$AD=10\sqrt{3}m$,設∠GEB=θ.
(1)試將污水管道的長度l表示成θ的函數(shù),并寫出定義域;
(2)當θ為何值時,污水凈化效果最好,并求此時管道的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知點P在雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$上,點A滿足$\overrightarrow{PA}=(t-1)\overrightarrow{OP}$(t∈R),且$\overrightarrow{OA}•\overrightarrow{OP}=64$,$\overrightarrow{OB}=(0,1)$,則$|{\overrightarrow{OB}•\overrightarrow{OA}}|$的最大值為( 。
A.$\frac{5}{4}$B.$\frac{24}{5}$C.$\frac{4}{5}$D.$\frac{5}{24}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.定義在R上的奇函數(shù)f(x)滿足f(x-2)=f(x+2),且當x∈[-2,0]時,f(x)=3x-1,則f(9)=( 。
A.-2B.2C.$-\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點,A,B分別為其左、右頂點.O為坐標原點,D為其上一點,DF⊥x軸.過點A的直線l與線段DF交于點E,與y軸交于點M,直線BE與y軸交于點N,若3|OM|=2|ON|,則雙曲線的離心率為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設隨機變量X的分布列為P(X=k)=$\frac{k}{25}$,k=1,2,3,4,5,則P($\frac{1}{2}$<X<$\frac{5}{2}$)等于( 。
A.$\frac{2}{15}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.$\frac{1}{15}$

查看答案和解析>>

同步練習冊答案