已知正四面體棱長(zhǎng)為1,則其在平面α內(nèi)的投影面積最大值是
1
2
1
2
分析:首先想象一下,當(dāng)正四面體繞著與平面平行的一條邊轉(zhuǎn)動(dòng)時(shí),不管怎么轉(zhuǎn)動(dòng),投影的三角形的一個(gè)邊始終是AB的投影,長(zhǎng)度是1,而發(fā)生變化的是投影的高,體會(huì)高的變化,得到結(jié)果,投影面積最大應(yīng)是線段AB相對(duì)的側(cè)棱與投影面平行時(shí)取到.
解答:解:由題意當(dāng)線段AB相對(duì)的側(cè)棱與投影面平行時(shí)投影最大,此時(shí)投影是關(guān)于線段AB對(duì)稱的兩個(gè)等腰三角形,
由于正四面體的棱長(zhǎng)都是1,故投影面積為
1
2
×1×1=
1
2

故答案為:
1
2
點(diǎn)評(píng):本題考查平行投影及平行投影作圖法,本題是一個(gè)計(jì)算投影面積的題目,注意解題過程中的投影圖的變化情況,本題是一個(gè)中檔題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知正六棱柱ABCDEF-A1B1C1D1E1F1的所有棱長(zhǎng)均為2,G為AF的中點(diǎn).
(1)求證:F1G∥平面BB1E1E;
(2)求證:平面F1AE⊥平面DEE1D1;
(3)求四面體EGFF1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四面體ABCD的各棱長(zhǎng)為a,
(1)求正四面體ABCD的表面積;
(2)求正四面體ABCD外接球的半徑R與內(nèi)切球的體積V內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四面體ABCD的棱長(zhǎng)為1,若以
AB
的方向?yàn)樽笠暦较,則該正四面體的左視圖與俯視圖面積和的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南通市四星級(jí)高中聯(lián)考高三(上)期初數(shù)學(xué)試卷(解析版) 題型:填空題

已知正四面體棱長(zhǎng)為1,則其在平面α內(nèi)的投影面積最大值是   

查看答案和解析>>

同步練習(xí)冊(cè)答案