15.某人2010年1月1日到銀行存入a元,若每年利息為r,按復(fù)利計(jì)算利息,則到2020年1月1日可取回的本息和為a(1+r)10元.

分析 由復(fù)利計(jì)算公式得到本息和構(gòu)成以a為首項(xiàng),1+r為公比的等比數(shù)列,由此能求出到2020年1月1日可取回的本息和.

解答 解:∵某人2010年1月1日到銀行存入a元,若每年利息為r,按復(fù)利計(jì)算利息,
∴到2011年可取回的本息和為a(1+r),
到2012年可取回的本息和為a(1+r)2
到2013年可取回的本息和為a(1+r)3,

∴到2020年可取回的本息和為a(1+r)10
故答案為:a(1+r)10

點(diǎn)評(píng) 本題考查本息和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某客運(yùn)部門規(guī)定甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用為:不超過25kg按0.5元/kg收費(fèi),超過25kg的部分按0.8元/kg收費(fèi),計(jì)算收費(fèi)的程序框圖如圖所示,則①②處應(yīng)填(  )
A.y=0.8x    y=0.5xB.y=0.5x    y=0.8x
C.y=25×0.5+(x-25)×0.8    y=0.5xD.y=25×0.5+0.8x    y=0.8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.函數(shù)f(x)=loga(1-x)+loga(x+3)(0<a<1).
(1)求方程f(x)=0的解.
(2)若函數(shù)f(x)的最小值為-1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.將一顆質(zhì)地均勻的骰子(一種各個(gè)面上分別標(biāo)有1,2,3,4,5,6個(gè)點(diǎn)的正方體玩具)先后拋擲2次,則出現(xiàn)向上的點(diǎn)數(shù)之和大于10的概率是$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.畫出函數(shù)f(x)=x2-|4x-4|的圖象,并求出當(dāng)x∈[-3,$\frac{5}{2}$]時(shí)函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)y=f(x)+x是奇函數(shù),且f(2)=1,則f(-2)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$\overrightarrow a$=(m,4),$\overrightarrow b$=(2,m-1),滿足|$\overrightarrow a$+$\overrightarrow b$|2=|$\overrightarrow a$|2+|$\overrightarrow b$|2,則m=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,已知AB∥CD,PA=AB=AD=2,DC=1,AD⊥AB,PD=PB=2$\sqrt{2}$,點(diǎn)M是PB的中點(diǎn).
(Ⅰ)證明:CM∥平面PAD;
(Ⅱ)求直線CM與平面PDC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+5,x≤-1}\\{{x}^{2},-1<x<1}\\{2x,x≥1}\end{array}\right.$.
(1)求f(-3)、f[f(-3)];  
(2)若f(a)=$\frac{1}{2}$,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案