5.某客運部門規(guī)定甲、乙兩地之間旅客托運行李的費用為:不超過25kg按0.5元/kg收費,超過25kg的部分按0.8元/kg收費,計算收費的程序框圖如圖所示,則①②處應填(  )
A.y=0.8x    y=0.5xB.y=0.5x    y=0.8x
C.y=25×0.5+(x-25)×0.8    y=0.5xD.y=25×0.5+0.8x    y=0.8x

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是用分段函數(shù)計算旅客行李的托運費用.

解答 解:分析程序中各變量、各語句的作用,據(jù)流程圖所示的順序,
可知:該程序的作用是用分段函數(shù)計算旅客行李的托運費用,
當滿足條件x>25時,應滿足“不超過25kg按0.5元/kg收費,超過25kg的部分按0.8元/kg收費”,
故①此時y=25×0.5+(x-25)×0.8,
當不滿足條件x>25時,應滿足“不超過25kg按0.5元/kg收費”,故②y=0.5x,
故選:C.

點評 算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個熱點,應高度重視.程序填空也是重要的考試題型,這種題考試的重點有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點考試的概率更大.此種題型的易忽略點是:不能準確理解流程圖的含義而導致錯誤,本題屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點分別為F1,F(xiàn)2,過F2的直線與橢圓交于A,B兩點,若△F1AB是以A為直角頂點的等腰直角三角形,則橢圓離心率為$\sqrt{6}-\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知集合A={-2,a},B={ 2015a,b},且A∩B={l},則A∪B={-2,1,2015}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)的定義域為R,且滿足f(x+3)+f(x)=2,又當x∈[-3,0]時,f(x)=x2+1,則f(4)=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知tanα=2,則$\frac{sin2α-cos2α}{si{n}^{2}α+2co{s}^{2}α}$的值為( 。
A.$\frac{7}{4}$B.$\frac{7}{6}$C.-$\frac{1}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知A={x|1-a≤x≤a+4},B={x|x<-1或x>5}.
(1)若A∩B=∅,求a的取值范圍.
(2)若A∪B=B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.某小區(qū)60%居民訂晚報,45%訂青年報,30%兩報均訂,隨機抽一戶,則至少訂一種報的概率為( 。
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.角α的終邊過點(-2,4),則cosα=( 。
A.$\frac{{2\sqrt{5}}}{5}$B.$-\frac{{\sqrt{5}}}{5}$C.$-\frac{{2\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.某人2010年1月1日到銀行存入a元,若每年利息為r,按復利計算利息,則到2020年1月1日可取回的本息和為a(1+r)10元.

查看答案和解析>>

同步練習冊答案