Processing math: 2%
17.計算x0lim\frac{sin(\frac{π}{6}+△x)-\frac{1}{2}}{△x}=(  )
A.\frac{1}{2}B.\frac{\sqrt{3}}{2}C.-\frac{1}{2}D.-\frac{\sqrt{3}}{2}

分析 由題意可知\underset{lim}{△x→0}\frac{sin(\frac{π}{6}+△x)-\frac{1}{2}}{△x}=\underset{lim}{△x→0}\frac{sin(\frac{π}{6}+△x)-sin\frac{π}{6}}{△x}═sin′(\frac{π}{6}),根據(jù)導數(shù)的運算,即可求得答案.

解答 解:\underset{lim}{△x→0}\frac{sin(\frac{π}{6}+△x)-\frac{1}{2}}{△x}=\underset{lim}{△x→0}\frac{sin(\frac{π}{6}+△x)-sin\frac{π}{6}}{△x}=sin′(\frac{π}{6})=cos\frac{π}{6}=\frac{\sqrt{3}}{2},
故選:B.

點評 本題考查極限及其運算,考查導數(shù)導數(shù)的概念,正弦函數(shù)導數(shù)的求法,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知在(\root{3}{x}-\frac{1}{2\root{3}{x}}n的展開式中第6項為常數(shù)項.
(1)求展開式中所有項的二項式系數(shù)和;
(2)求展開式中所有項的系數(shù)和;
(3)求展開式中所有的有理項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.方程組\left\{\begin{array}{l}x-y=7\\ x+y=1\end{array}\right.的解集是(  )
A.(4,3)B.{4,-3}C.{(4,3)}D.{(4,-3)}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.某工廠進行節(jié)能降耗技術改造,在四個月的過程中,其煤炭消耗量(單位:噸)的情況如表:
技術改造的月份x1234
煤炭消耗量y4.5432.5
顯然煤炭消耗量y與技術改造的月份x之間有較好的線性相關關系,則其線性回歸方程為( �。�
A.\widehat{y}=0.7x+5.25B.\widehat{y}=-0.6x+5.25C.\widehat{y}=-0.7x+6.25D.\widehat{y}=-0.7x+5.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知二次函數(shù)f(x)=x2-(a-1)x+5在區(qū)間(\frac{1}{2},1)上是增函數(shù),求:
(1)實數(shù)a的取值范圍;
(2)f(2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.一臺風中心于某天中午12:00在港口O的正南方向,距該港口200\sqrt{2}千米的海面A處形成(如圖),并以每小時a千米的速度向北偏東45°方向上沿直線勻速運動,距臺風中心100\sqrt{5}千米以內(nèi)的范圍將受到臺風的影響,請建立適當?shù)淖鴺讼担?br />(1)當臺風中心離港口O距離最近時,求該臺風所影響區(qū)域的邊界曲線方程;
(2)若港口O于當天下午17:00開始受到此臺風的影響,
(i)求a的值;
(ii)求港口O受該臺風影響持續(xù)時間段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在△ABC中,角A,B,C的對邊分別是a,b,c,已知\frac{c}{cosC}=\frac{4a-b}{cosB}
(1)求cosC的值;
(2)若c=\sqrt{3},△ABC的面積S=\frac{\sqrt{15}}{4},求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.判斷下列函數(shù)的奇偶性:
(1)f(x)=log2(x+1)+log2(x-1)是非奇非偶函數(shù);
(2)f(x)=log2(x2-1)是偶函數(shù);
(3)f(x)=log2(x+1)+log2(1-x)是偶函數(shù);
(4)f(x)=log2\frac{1+x}{1-x}是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知\overrightarrow a、\overrightarrow b、\overrightarrow c是三個單位向量,且\overrightarrow c\overrightarrow a=\overrightarrow c\overrightarrow b>0,則對于任意的正實數(shù)t,|{\overrightarrow c$-t$\overrightarrow a$-$\frac{1}{t}$$\overrightarrow b}|的最小值為\frac{1}{2},則\overrightarrow a\overrightarrow b=\frac{1}{8}或-\frac{7}{8}

查看答案和解析>>

同步練習冊答案