17.已知i為虛數(shù)單位,則z=i+i2+i3+…+i2017=( 。
A.0B.1C.-iD.i

分析 利用等比數(shù)列的求和公式、復(fù)數(shù)的周期性即可得出.

解答 解:z=$\frac{i(1-{i}^{2017})}{1-i}$=$\frac{i[1-({i}^{4})^{504}i]}{1-i}$=$\frac{i(1-i)}{1-i}$=i,
故選:D.

點評 本題考查了等比數(shù)列的求和公式、復(fù)數(shù)的周期性,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若復(fù)數(shù)z=(x2-2x-3)+(x+1)i為純虛數(shù),則實數(shù)x的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$a={2^{\frac{1}{2}}},b={({2^{{{log}_2}^3}})^{-\frac{1}{2}}}$,c=cos50°cos10°+cos140°sin170°,則實數(shù)a,b,c的大小關(guān)系是( 。
A.a>c>bB.b>a>cC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=ax2+(b-2a)x-2b為偶函數(shù),且在(0,+∞)單調(diào)遞減,則f(x)>0的解集為{x|-2<x<2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知球O的半徑為2,四點S、A、B、C均在球O的表面上,且SC=4,AB=$\sqrt{3}$,∠SCA=∠SCB=$\frac{π}{6}$,則點B到平面SAC的距離為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{3}{2}$C.$\frac{\sqrt{3}}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知圓F1:(x+$\sqrt{3}$)2+y2=9與圓F2:(x-$\sqrt{3}$)2+y2=1,以圓F1、F2的圓心分別為左右焦點的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過兩圓的交點.
(1)求橢圓C的方程;
(2)直線x=2$\sqrt{3}$上有兩點M、N(M在第一象限)滿足$\overrightarrow{{F}_{1}M}$•$\overrightarrow{{F}_{2}N}$=0,直線MF1與NF2交于點Q,當(dāng)|MN|最小時,求線段MQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.要得到函數(shù)f(x)=cos2x的圖象,只需將函數(shù)g(x)=sin2x的圖象(  )
A.向左平移$\frac{1}{2}$個周期B.向右平移$\frac{1}{2}$個周期
C.向左平移$\frac{1}{4}$個周期D.向右平移$\frac{1}{4}$個周期

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有人持金出五關(guān),前關(guān)二稅一,次關(guān)三而稅一,次關(guān)四而稅一,次關(guān)五而稅一,次關(guān)六而稅一,并五關(guān)所稅,適重一斤.問本持金幾何”其意思為“今有人持金出五關(guān),第1關(guān)收稅金$\frac{1}{2}$,第2關(guān)收稅金$\frac{1}{3}$,第3關(guān)收稅金$\frac{1}{4}$,第4關(guān)收稅金$\frac{1}{5}$,第5關(guān)收稅金$\frac{1}{6}$,5關(guān)所收稅金之和,恰好1斤重,設(shè)這個人原本持金為x,按此規(guī)律通過第8關(guān),”則第8關(guān)需收稅金為$\frac{1}{72}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)命題p:函數(shù)f(x)=ln$\frac{{e}^{x}+1}{{e}^{-x}+1}$為奇函數(shù);命題q:?x0∈(0,2),x${\;}_{0}^{2}$>2${\;}^{{x}_{0}}$,則下列命題為假命題的是( 。
A.p∨qB.p∧(¬q)C.(¬p)∧qD.(¬p)∨(¬q)

查看答案和解析>>

同步練習(xí)冊答案