已知P是拋物線y2=4x上的一點(diǎn),A(2,2)是平面內(nèi)的一定點(diǎn),F(xiàn)是拋物線的焦點(diǎn),當(dāng)P點(diǎn)坐標(biāo)是________時(shí),|PA|+|PF|最小.

(1,2)
分析:設(shè)P到準(zhǔn)線的距離等于PM,則|PA|+|PF|=|PA|+|PM|,故當(dāng)A、P、M三點(diǎn)共線時(shí),,|PA|+|PF|最小,求得P點(diǎn)坐標(biāo).
解答:由拋物線的方程可得F(1,0),設(shè)P到準(zhǔn)線的距離等于PM,則|PA|+|PF|=|PA|+|PM|,
故當(dāng)A、P、M三點(diǎn)共線時(shí),PA+PF 最小,此時(shí),PA平行于x軸,把y=2代入拋物線的方程可得x=1,
故P點(diǎn)坐標(biāo)是(1,2),
故答案為 (1,2).
點(diǎn)評(píng):本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,判斷當(dāng)A、P、M三點(diǎn)共線時(shí),|PA|+|PF|最小,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5、已知P是拋物線y2=4x上的一點(diǎn),A(2,2)是平面內(nèi)的一定點(diǎn),F(xiàn)是拋物線的焦點(diǎn),當(dāng)P點(diǎn)坐標(biāo)是
(1,2)
時(shí),|PA|+|PF|最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P是拋物線y2=2x上的點(diǎn),點(diǎn)M(m,0),試求點(diǎn)P與點(diǎn)M的距離的最小值(其中m∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P是拋物線y2=4x上一動(dòng)點(diǎn),F(xiàn)是拋物線的焦點(diǎn),定點(diǎn)A(4,1),則|PA|+|PF|的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P是拋物線y2=2x上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作圓(x-3)2+y2=1的切線,切點(diǎn)分別為M,N,則|MN|的最小值是
4
5
5
4
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•寶山區(qū)二模)已知P是拋物線y2=4x上的動(dòng)點(diǎn),F(xiàn)是拋物線的焦點(diǎn),則線段PF的中點(diǎn)軌跡方程是
y2=2x-1
y2=2x-1

查看答案和解析>>

同步練習(xí)冊(cè)答案