所有棱長都為2的正三棱錐的體積為
 
考點:棱柱、棱錐、棱臺的體積
專題:計算題,空間位置關(guān)系與距離
分析:由已知中正四面體的所有棱長都為2,我們可分別求出棱錐的底面面積和高,代入棱錐體積公式,即可得到答案.
解答: 解:當(dāng)棱長為2時
正四面體的底面積S=
3
4
×22
=
3

正四面體的高h=
6
3
×2
=
2
6
3

故正四面體的體積V=
1
3
•S•h=
2
2
3

故答案為:
2
2
3
點評:本題考查的知識點是棱錐的體積公式,由于正四面體在考試中比較容易考查,故熟練掌握棱長為a的正四面體的底面積、高、體積、表面積、內(nèi)切球半徑、外切球半徑…的公式,是提高解答正四面體問題速度和精度的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
1
x
,試判斷f(x)的奇偶性及在(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-
3
4
x2sinθ,其中x∈R,θ為參數(shù),且0≤θ≤π.若函數(shù)f(x)的極小值小于-
1
128
,則參數(shù)θ的取值范圍是( 。
A、(
π
6
,π)
B、(
π
6
,
π
2
]
C、[
π
6
,
6
]
D、(
π
6
,
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊長為2,△EBC為正三角形.若向正方形ABCD內(nèi)隨機投擲一個質(zhì)點,則它落在△EBC內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義在R上的函數(shù)f(x),有下述四個命題,其中正確命題序號為
 

①若函數(shù)f(x)是奇函數(shù),則f(x-1)的圖象關(guān)于點A(1,0)對稱;
②若對x∈R,有f(x+1)=f(x-1),則y=f(x)直線x=1對稱;
③若函數(shù)f(x-1)關(guān)于直線x=1對稱,則函數(shù)f(x)為偶函數(shù);
④函數(shù)f(x+1)與函數(shù)f(1-x)直線x=1對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若O為△ABC的內(nèi)心,且滿足(
OB
-
OC
)•(
OB
+
OC
-2
OA
)=0,則△ABC的形狀為(  )
A、等腰三角形B、正三角形
C、直角三角形D、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C三點在球心為O,半徑為3的球面上,且三棱錐O-ABC為正四面體,那么A、B兩點間的球面距離為( 。
A、
π
3
B、
π
2
C、
2
3
π
D、π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個棱長為2的正 方體,被一個平面截后所得幾何體的三視圖如圖所示,則該截面的面積為(  )
A、
3
10
2
B、4
C、
9
2
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=
sinx當(dāng)sinx≥cosx
cosx當(dāng)sinx<cosx
,下列命題正確的是( 。
A、值域[-1,1]
B、當(dāng)且僅當(dāng)x=2kπ+
π
2
,(k∈Z)取得最大值
C、最小正周期為π
D、當(dāng)且僅當(dāng)2kπ+π<x<2kπ+
2
,(k∈Z)時f(x)<0

查看答案和解析>>

同步練習(xí)冊答案