已知拋物線
的焦點為
,點
是拋物線上的一點,且其縱坐標為4,
.
(1)求拋物線的方程;
(2)設點
是拋物線上的兩點,
的角平分線與
軸垂直,求直線AB的斜率;
(3)在(2)的條件下,若直線
過點
,求弦
的長.
(1)
(2)-1(3)
試題分析:解:(1)設
,因為
,由拋物線的定義得
,又
,所以
,因此
,解得
,從而拋物線的方程為
.
(2)由(1)知點
的坐標為
,因為
的角平分線與
軸垂直,所以可知
的傾斜角互補,即
的斜率互為相反數(shù)
設直線
的斜率為
,則
,由題意
,
把
代入拋物線方程得
,該方程的解為4、
,
由韋達定理得
,即
,同理
,
所以
,
(3)設
,代入拋物線方程得
,
,
點評:關于曲線的大題,第一問一般是求出曲線的方程,第二問常與直線結合起來,當涉及到交點時,常用到根與系數(shù)的關系式:
(
)。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
設連接雙曲線
與
的四個頂點組成的四邊形的面積為
,連接其四個焦點組成的四邊形的面積為
,則
的最大值是
A. | B. | C. 1 | D.2 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設中心在原點的雙曲線與橢圓
+y
2=1有公共的焦點,且它們的離心率互為倒數(shù),則該雙曲線的方程是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知焦距為
的雙曲線的焦點在x軸上,且過點P
.
(Ⅰ)求該雙曲線方程 ;
(Ⅱ)若直線m經(jīng)過該雙曲線的右焦點且斜率為1,求直線m被雙曲線截得的弦長.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
以雙曲線
的焦點為頂點,頂點為焦點的橢圓的標準方程是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
雙曲線
=1的兩條漸近線互相垂直,那么該雙曲線的離心率是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設橢圓
與拋物線
的焦點均在
軸上,
的中心及
的頂點均為原點,從每條曲線上各取兩點,將其坐標記錄于下表:
(Ⅰ)求曲線
、
的標準方程;
(Ⅱ)設直線
過拋物線
的焦點
,
與橢圓交于不同的兩點
、
,當
時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知動點
到點
的距離與到直線
的距離之比為定值
,記
的軌跡為
.
(1)求
的方程,并畫出
的簡圖;
(2)點
是圓
上第一象限內(nèi)的任意一點,過
作圓的切線交軌跡
于
,
兩點.
(i)證明:
;
(ii)求
的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知平面上動點P(
)及兩個定點A(-2,0),B(2,0),直線PA、PB的斜率分別為
、
且
(I)求動點P所在曲線C的方程。
(II)設直線
與曲線C交于不同的兩點M、N,當OM⊥ON時,求點O到直線
的距離。(O為坐標原點)
查看答案和解析>>