若函數(shù)f(x)=x2+4x+6,則f(x)在[-3,0)上的值域為( 。
A、[2,6]
B、[2,6)
C、[2,3]
D、[3,6]
考點:二次函數(shù)的性質
專題:函數(shù)的性質及應用
分析:本題利用二次函數(shù)的單調性和圖象研究函數(shù)的值域,得到本題結論.
解答: 解:∵函數(shù)f(x)=x2+4x+6,
∴當x∈[-3,0)時,
函數(shù)f(x)在區(qū)間[-3,-2]上單調遞減,
函數(shù)f(x)在區(qū)間[-2,0)上單調遞增.
∵f(-2)=2,f(-3)=3,f(0)=6,
∴2≤f(x)<6.
故選B.
點評:本題考查了二次函數(shù)的單調性、圖象和函數(shù)的值域,本題難度不大,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在生產過程中,測得纖維產品的纖度(表示纖維粗細的一種量)共有100個數(shù)據(jù),將數(shù)據(jù)分組如右表:
分組頻數(shù)
[1.30,1.34)8
[1.34,1.38)24
[1.38,1.42)32
[1.42,1.46)20
[1.46,1.50)12
[1.50,1.54)4
合計100
(1)畫出頻率分布直方圖;
(2)從頻率分布直方圖估計出纖度的眾數(shù)、中位數(shù)和平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列有關命題的說法正確的是( 。
A、命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B、“x=-1”是“x2-5x-6=0”的必要不充分條件
C、命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D、命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2≠0.則m≠0或n≠0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=2sin(2x+
π
3
)
的圖象關于點(x0,0)對稱,若x0∈[-
π
2
,0]
,則x0等于( 。
A、-
π
2
B、-
π
6
C、-
π
4
D、-
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù) f(x)=2x+x,g(x)=x-
1
x
,h(x)=log3x+x的零點依次為a,b,c,則把a,b,c按照從小到大的順序排列為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某制造商3月生產了一批乒乓球,隨機抽取100個進行檢查,測得每個球的直徑(單位:mm),將數(shù)據(jù)進行分組,得到如下頻率分布表:
分組頻數(shù)頻率
[39.5,39.7)10
[39.7,39.9)20
[39.9,40.1)50
[40.1,40.3]20
 合計100
(Ⅰ)補充完成頻率分布表,并完成頻率分布直方圖;
(Ⅱ)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間[39.9,40.1)的中點值是40.0)作為代表.據(jù)此估計這批乒乓球直徑的平均值(精確到0.1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若正實數(shù)a,b滿足ab=a+1,則a+b的最小值為(  )
A、2
B、
5
+1
C、
5
-1
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

判斷并證明f(x)=
3
x+1
在區(qū)間(-1,+∞)上的單調性,并求出f(x)在[0,5]的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知p:x>1,q:ax+1<0(a≠0),若p是q的必要不充分條件,則a的取值范圍為
 

查看答案和解析>>

同步練習冊答案