【題目】棱臺的三視圖與直觀圖如圖所示.

(1)求證:平面平面

(2)在線段上是否存在一點,使與平面所成的角的正弦值為?若存在,指出點的位置;若不存在,說明理由.

【答案】1見解析.2的中點.

【解析】試題分析:(1)首先根據(jù)三視圖特征可得平面 為正方形,所以.再由即可得線面垂直從而得出面面垂直(2)直接建立空間坐標系寫出各點坐標求出法向量,在根據(jù)向量的交角公式得出等式求出

解析:(1)根據(jù)三視圖可知平面, 為正方形,

所以.

因為平面,所以,

又因為,所以平面.

因為平面,所以平面平面.

(2)以為坐標原點, 所在直線分別為軸建立空間直角坐標系,如圖所示,

根據(jù)三視圖可知為邊長為2的正方形, 為邊長為1的正方形,

平面,且.

所以, , , , .

因為上,所以可設.

因為,所以 .

所以, .

設平面的法向量為

根據(jù)

,可得,所以.

與平面所成的角為

所以 .

所以,即點的中點位置.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓的左、右焦點,點在橢圓上,且離心率為

(1)求橢圓的方程;

(2)若的角平分線所在的直線與橢圓的另一個交點為為橢圓上的一點,當面積最大時,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過圓上的點作圓的切線,過點作切線的垂線若直線過拋物線的焦點.

(1)求直線與拋物線的方程

2若直線與拋物線交于點,在拋物線的準線上,,的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把正整數(shù)按下表排列:

(1)200在表中的位置(在第幾行第幾列);

(2)求表中主對角線上的數(shù)列:1、3、7、13、21、…的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省高中男生身高統(tǒng)計調查數(shù)據(jù)顯示:全省名男生的身高服從正態(tài)分布,現(xiàn)從該生某校高三年級男生中隨機抽取名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于之間,將測量結果按如下方式分成組:第一組,第二組,…,第六組,下圖是按照上述分組方法得到的頻率分布直方圖.

(1)求該學校高三年級男生的平均身高;

(2)求這名男生中身高在以上(含)的人數(shù);

(3)從這名男生中身高在以上(含)的人中任意抽取人,該中身高排名(從高到低)在全省前名的人數(shù)記為,求的數(shù)學期望.

(附:參考數(shù)據(jù):若服從正態(tài)分布,則, .)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐,底面為菱形, ,點在線段,, 的中點.

(Ⅰ)若,求證平面平面;

(Ⅱ)若平面平面, 為等邊三角形,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程是 (為參數(shù)),以原點為極點, 軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.

(Ⅰ)求曲線的普通方程與直線的直角坐標方程;

(Ⅱ)已知直線與曲線交于 兩點,與軸交于點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結論:

①若,則“”成立的一個充分不必要條件是“,且”;

②存在,使得

③若函數(shù)的導函數(shù)是奇函數(shù),則實數(shù)

④平面上的動點到定點的距離比軸的距離大1的點的軌跡方程為.

其中正確結論的序號為_________.(填寫所有正確的結論序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓的中心為原點O,長軸在x軸上,離心率,過左焦點F1x軸的垂線交橢圓于A,兩點

Ⅰ)求該橢圓的標準方程;

Ⅱ)取垂直于x軸的直線與橢圓相交于不同的兩點P,,過P、作圓心為Q的圓,使橢圓上的其余點均在圓Q外.若,求圓Q的標準方程.

查看答案和解析>>

同步練習冊答案