兩異面直線a,b成80°角,過空間任意一點P作直線l,使其與兩直線a,b成等角50°,則這樣的直線l有
3
3
條.
分析:根據(jù)已知中異面直線a與b所成的角為80°,設(shè)O為空間一點,過O分別作OA∥a,OB∥b,則OA,OB成80°角.過O點作出直線OA,OB相交所成角的兩條角平分線,滿足題意的直線或為兩平分線或其射影為兩平分線,由此確定直線條數(shù).
解答:解:首先給出兩個性質(zhì)①與一個角∠AOB的兩邊成等角的直線在面AOB內(nèi)的射影是∠AOB的平分線.
②若∠AOC所在平面與∠BOC所在平面垂直,則有cos∠AOCcos∠BOC=cos∠AOB.
在空間任取一點O,作OA∥a,OB∥b,則OA,OB成80°角,不妨設(shè)∠AOB=80°,如圖

(1)直線l1為∠AOB的補(bǔ)角∠A′OB=100°的平分線,此時l1與兩直線 OA,OB成等角50°,從而l1與兩直線a,b成等角50°,若把直線l1繞O在垂直于面A′OB 的平面內(nèi)旋轉(zhuǎn)時,設(shè)
l1與面A′OB所成的角為θ,由性質(zhì)②cosθcos50°=cos50°,θ=0°,與旋轉(zhuǎn)前l(fā)1重合. 即此時只有一條直線滿足題意.
 (2)直線l2為∠AOB的平分線,顯然l2與兩直線 OA,OB成等角40°,若把直線l2繞O在垂直于面AOB 的平面內(nèi)旋轉(zhuǎn)時,設(shè)l2與面AOB所成的角為θ,由性質(zhì)②cosθcos40°=cos50°,
移向得出cosθ=
cos50°
cos40°
<1.存在θ,根據(jù)對稱性,在面AOB兩側(cè)各有一條.即此時共有兩條直線滿足題意.
綜上所述這樣的直線l有3條.
故答案為:3.
點評:本題考查異面直線所成的角,以及解決異面直線所成的角的方法(平移法)的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的思想和運(yùn)動變化的思想方法. 本題利用定量的方法進(jìn)行問題解決,當(dāng)改變題干中兩個角的度數(shù)大小時,此法照樣使用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:013

正方體有8個頂點,過每兩個頂點作一直線,在這些直線中,成角的異面直線的對數(shù)為

[  ]

A.24
B.36
C.48
D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:導(dǎo)學(xué)大課堂必修二數(shù)學(xué)蘇教版 蘇教版 題型:044

已知a、b是兩條異面直線,直線a上的兩點A、B的距離為6,直線b上的兩點C、D的距離為8,AC、BD的中點分別為M、N且MN=5,求異面直線a、b所成的角.

查看答案和解析>>

同步練習(xí)冊答案