5.命題“?x∈R,|x|+x2≥0”的否定是( 。
A.?x0∈R,|x0|+x${\;}_{0}^{2}$≥0B.?x0∈R,|x0|+x${\;}_{0}^{2}$<0
C.?x∈R,|x|+x2<0D.?x∈R,|x|+x2≤0

分析 根據(jù)全稱命題的否定是特稱命題進(jìn)行判斷即可.

解答 解:命題是全稱命題,則命題的否定是特稱命題,
則命題的否定是:?x0∈R,|x0|+x${\;}_{0}^{2}$<0,
故選:B.

點(diǎn)評(píng) 本題主要考查含有量詞的命題的否定,根據(jù)全稱命題的否定是特稱命題是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)是定義在R上周期為3的奇函數(shù),若tanα=3,則f(2015sin2α)=(  )
A.-1B.0C.1D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若x∈[1,2],y∈[2,3]時(shí),$\frac{a{x}^{2}+2{y}^{2}}{xy}$-1>0恒成立,則a的取值范圍( 。
A.(-1,+∞)B.(-∞,-1)C.[-1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若z=2+i,則$\frac{4i}{z\overline z-1}$=( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知a1=a,Sn是數(shù)列{an}的前n項(xiàng)和,且滿足:Sn2=3n2an+Sn-12,an≠0,n=2,3,4,…,設(shè)數(shù)列{bn}滿足:bn=a2n,n∈N*
(1)證明數(shù)列{bn}是等差數(shù)列,并求出數(shù)列{bn}的公差;
(2)確定a的取值集合M,使a∈M時(shí),數(shù)列{an}是單調(diào)遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知一個(gè)空心密閉(表面厚度忽略不計(jì))的正四面體工藝品的棱長(zhǎng)為$3\sqrt{6}$,若在該工藝品內(nèi)嵌入一個(gè)可以在其內(nèi)部任意轉(zhuǎn)動(dòng)的正方體,則正方體棱長(zhǎng)的最大值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,且過(guò)點(diǎn)A($\sqrt{6}$,1),點(diǎn)P在橢圓C上,且在第一象限內(nèi),直線PQ與圓O:x2+y2=b2相切于點(diǎn)M.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若OP⊥OQ,求點(diǎn)Q的縱坐標(biāo)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某校高二年級(jí)共有學(xué)生1000名,其中走讀生750名,住宿生250名,現(xiàn)采用分層抽樣的方法從該年級(jí)抽取100名學(xué)生進(jìn)行問(wèn)卷調(diào)查.根據(jù)問(wèn)卷取得了這100名學(xué)生每天晚上有效學(xué)習(xí)時(shí)間(單位:分鐘)的數(shù)據(jù),按照以下區(qū)間分為八組:①[0,30),②[30,60),③[60,90),④[90,120),…得到頻率分布直方圖(部分)如圖.

(Ⅰ)如果把“學(xué)生晚上有效時(shí)間達(dá)到兩小時(shí)”作為是否充分利用時(shí)間的標(biāo)準(zhǔn),對(duì)抽取的100名學(xué)生,完成下列2×2列聯(lián)表;并判斷是否有95%的把握認(rèn)為學(xué)生利用時(shí)間是否充分與走讀、住宿有關(guān)?
利用時(shí)間充分利用時(shí)間不充分總計(jì)
走讀生50
住宿生10
總計(jì)60100
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
參考列表:

P(K2≥k0
0.500.400.250.150.100.050.025

k0
0.4550.7081.3232.0722.7063.8415.024
(Ⅱ)若在第①組、第②組、第③組中共抽出3人調(diào)查影響有效利用時(shí)間的原因,記抽到“有效學(xué)習(xí)時(shí)間少于60分鐘”的學(xué)生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)m,n分別是先后拋擲兩枚骰子所得的點(diǎn)數(shù),則在先后兩次出現(xiàn)的點(diǎn)數(shù)中有4的條件下,使方程x2+mx+n=0有兩個(gè)不相等實(shí)根的概率為$\frac{5}{11}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案