在函數(shù)y=logax(a>1,x>1)的圖象有A、B、C三點,橫坐標分別為m,m+2,m+4.
(1)若△ABC面積為S,求S=f(m);
(2)求S=f(m)的值域;
(3)確定S=f(m)的單調性.
解:分別由A、B、C三點向x軸作垂線,交點為D,E,F(xiàn)
S
△ABC=S
ABED+S
BCFE-S
ACFD
=
•2•{[log
am+log
a(m+2)]+[log
a(m+2)+log
a(m+4)]}-2•[log
am+log
a(m+4)]
=2log
a(m+2)-log
am-log
a(m+4)
=
=
∵m>1,∴t=m
2+4m為增函數(shù),
∴原函數(shù)為減函數(shù),
∴0<f(m)≤
即函數(shù)S=f(m)的值域為(0,
].
分析:(1)分別由A、B、C三點向x軸作垂線,交點為D,E,F(xiàn),根據(jù)S
△ABC=S
ABED+S
BCFE-S
ACFD和D,E,F(xiàn)的坐標,進而得出函數(shù)f(m)的表達式.
(2)由(1)中得f(m)=
,先根據(jù) m>1,推斷t=m
2+4m為增函數(shù),進而推斷函數(shù)f(m)為減函數(shù),根據(jù)m的范圍,求得函數(shù)的值域.
(3)由(1)中得f(m)=
,先根據(jù) m>1,推斷t=m
2+4m為增函數(shù),進而推斷函數(shù)f(m)為減函數(shù),
點評:本題主要考查了函數(shù)單調性的應用.常涉及利用單調性求函數(shù)的值域和最值等問題.