11.已知f(x)為奇函數(shù),當(dāng)x<0時(shí),f(x)=a+x+log2(-x),其中a∈(-4,5),則f(4)>0的概率為( 。
A.$\frac{1}{3}$B.$\frac{4}{9}$C.$\frac{5}{9}$D.$\frac{2}{3}$

分析 求出f(4)>0時(shí)a的范圍,以長(zhǎng)度為測(cè)度,即可求出概率.

解答 解:由題意,f(4)=-f(-4)=-(a-4+log24)>0,∴a<2,
∵a∈(-4,5),∴a∈(-4,2),
∴所求概率為$\frac{2+4}{5+4}$=$\frac{2}{3}$,
故選D.

點(diǎn)評(píng) 本題考查幾何概型,考查概率的計(jì)算,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(文)試卷(解析版) 題型:填空題

設(shè)函數(shù)有兩個(gè)不同的極值點(diǎn),,且對(duì)不等式恒成立,則實(shí)數(shù)的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)的定義域?yàn)椋╝,b),導(dǎo)函數(shù)f′(x)在(a,b)上的圖象如圖所示,則函數(shù)f(x)在(a,b)上的極大值點(diǎn)的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某研發(fā)公司研制出一款保護(hù)視力的護(hù)眼儀,并在新疆某中學(xué)的甲、乙、丙、丁四個(gè)班級(jí)中試用,這四個(gè)班級(jí)人數(shù)的條形圖如下,為了了解學(xué)生護(hù)眼儀的使用情況,對(duì)四個(gè)班的學(xué)生進(jìn)行了問卷調(diào)查,然后按分層抽樣的方法從調(diào)查問卷中抽取20份進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下面表格所示:
 甲班 乙班 丙班 丁班
滿意  50% 80% 100% 60%
 一般 25% 0 0 0
 不滿意 25% 20% 040%
(1)若學(xué)生A在甲班,求學(xué)生A的調(diào)查問卷被選中的概率;
(2)若需從調(diào)查問卷被選中且填寫不滿意的學(xué)生中再選2人進(jìn)行訪談,求這兩人中至少有一人是丁班學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.以坐標(biāo)原點(diǎn)O為圓心,且與直線x+y+2=0相切的圓方程是x2+y2=2,圓O與圓x2+y2-2y-3=0的位置關(guān)系是相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.以下是新兵訓(xùn)練時(shí),某炮兵連8周中炮彈對(duì)同一目標(biāo)的命中情況的柱狀圖:
 
(1)計(jì)算該炮兵連這8周中總的命中頻率p0,并確定第幾周的命中頻率最高;
(2)以(1)中的p0作為該炮兵連炮兵甲對(duì)同一目標(biāo)的命中率,若每次發(fā)射相互獨(dú)立,且炮兵甲發(fā)射3次,記命中的次數(shù)為X,求X的數(shù)學(xué)期望;
(3)以(1)中的p0作為該炮兵連炮兵對(duì)同一目標(biāo)的命中率,試問至少要用多少枚這樣的炮彈同時(shí)對(duì)該目標(biāo)發(fā)射一次,才能使目標(biāo)被擊中的概率超過0.99?(取lg0.4=-0.398)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.要得到函數(shù)y=sin(3x-$\frac{π}{4}$)的圖象,只需將函數(shù)y=cos3x的圖象( 。
A.向右平移$\frac{π}{4}$個(gè)單位B.向左平移$\frac{π}{4}$個(gè)單位
C.向右平移$\frac{3π}{4}$個(gè)單位D.向左平移$\frac{3π}{4}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.以橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的中心O為圓心,以$\sqrt{\frac{ab}{2}}$為半徑的圓稱為該橢圓的“伴隨”.
(1)若橢圓C的離心率為$\frac{\sqrt{3}}{2}$,其“伴隨”與直線$\sqrt{3}$x+y-2=0相切,求橢圓C的方程.
(2)設(shè)橢圓E:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{4^{2}}$=1,P為橢圓C上任意一點(diǎn),過點(diǎn)P的直線y=kx+m交橢圓E于AB兩點(diǎn),射線PO交橢圓E于點(diǎn)Q.
(i)求$\frac{|OQ|}{|OP|}$的值;
(ii)求△ABQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了摸清整個(gè)江門大道的交通狀況,工作人員隨機(jī)選取20處路段,在給定的測(cè)試時(shí)間內(nèi)記錄到機(jī)動(dòng)車的通行數(shù)量情況如下(單位:輛):
147  161  170  180  163  172  178  167  191  182
181  173  174  165  158  154  159  189  168  169
(Ⅰ)完成如下頻數(shù)分布表,并作頻率分布直方圖;
通行數(shù)量區(qū)間[145,155)[155,165)[165,175)[175,185)[185,195)
頻數(shù)
(Ⅱ)現(xiàn)用分層抽樣的方法從通行數(shù)量區(qū)間為[165,175)、[175,185)及[185,195)的路段中取出7處加以優(yōu)化,再?gòu)倪@7處中隨機(jī)選2處安裝智能交通信號(hào)燈,設(shè)所取出的7處中,通行數(shù)量區(qū)間為[165,175)路段安裝智能交通信號(hào)燈的數(shù)量為隨機(jī)變量X(單位:盞),試求隨機(jī)變量X的分布列與數(shù)學(xué)期望E(X).

查看答案和解析>>

同步練習(xí)冊(cè)答案