已知向量,函數(shù)
(1)求函數(shù)f(x)在區(qū)間上的最大值;
(2)若△ABC的角A、B所對(duì)的邊分別為a、b,,,a+b=11,求a的值.
【答案】分析:(1)利用兩個(gè)向量的數(shù)量積公式求得f(x)==4+sin2x,由,根據(jù)正弦函數(shù)的定義域和值域求得sin2x的范圍,即可求得函數(shù)f(x)的值域.
(2)由求得sinA的值;由,求得的值,從而求得cosB和sinB的值,再由正弦定理得,求得a的值.
解答:解:(1)依題意,f(x)==2(2+sinxcosx)=4+sin2x…(3分),
,可得2x∈[0,π],sin2x∈[0,1],…(4分),
所以,函數(shù)f(x)在區(qū)間上的最大值為5.…(5分)
(2)由.…(6分),
,得…(7分),從而…(8分),
因?yàn)?<B<π,所以…(9分),
由正弦定理得…(11分),所以,,…(12分).
點(diǎn)評(píng):本題主要考查兩個(gè)向量的數(shù)量積公式,正弦定理以及正弦函數(shù)的定義域和值域,屬于中檔題.
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆廣東省實(shí)驗(yàn)中學(xué)、華師附中、深圳中學(xué)、廣雅中學(xué)高三上學(xué)期期末數(shù)學(xué)文卷 題型:解答題

(本小題滿分12分)
已知向量,,函數(shù) 
(1)求的最小正周期;
(2)若,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年安徽省六校教育研究會(huì)高三2月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知向量,,函數(shù)

最大值;

中,設(shè)角,的對(duì)邊分別為,若,且?,求角的大。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省廣州市育才中學(xué)高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知向量,函數(shù)
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[0,π]時(shí),求f(x)的單調(diào)遞增區(qū)間;
(3)說(shuō)明f(x)的圖象可以由g(x)=sinx的圖象經(jīng)過(guò)怎樣的變換而得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省五校高三下學(xué)期第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知向量,,函數(shù)

(Ⅰ)若方程上有解,求的取值范圍;

(Ⅱ)在中,分別是A,B,C所對(duì)的邊,當(dāng)(Ⅰ)中的取最大值且時(shí),求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年南安一中高一下學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

已知向量,,函數(shù)

(1)求函數(shù)的最小正周期以及單調(diào)遞增區(qū)間;

(2)若時(shí), 求的值域;

(3)求方程內(nèi)的所有實(shí)數(shù)根之和.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案