9.已知二次函數(shù)f(x)=ax2+1(x∈R)的圖象過(guò)點(diǎn)A(-1,3).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)證明f(x)在(-∞,0)上是減函數(shù).

分析 (Ⅰ)A代入函數(shù)的解析式,求出a,即可求函數(shù)f(x)的解析式;
(Ⅱ)利用導(dǎo)數(shù)知識(shí)證明f(x)在(-∞,0)上是減函數(shù).

解答 (Ⅰ)解:∵二次函數(shù)f(x)=ax2+1(x∈R)的圖象過(guò)點(diǎn)A(-1,3),
∴a+1=3,∴a=2,
∴函數(shù)的解析式為f(x)=2x2+1-----------------------------------------(6分)
(Ⅱ)證明:∵f(x)=2x2+1,
∴f′(x)=4x,
∵x<0,∴f′(x)=4x<0,
∴函數(shù)f(x)在(-∞,0)上是減函數(shù).----------------------------------------------(14分)

點(diǎn)評(píng) 本題考查函數(shù)解析式的確定,考查函數(shù)的單調(diào)性,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>1)的焦距為2,過(guò)短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)的圓的面積為$\frac{4}{3}$π,過(guò)橢圓C的右焦點(diǎn)作斜率為k(k≠0)的直線l與橢圓C相交于A、B兩點(diǎn),線段AB的中點(diǎn)為P.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)P垂直于AB的直線與x軸交于點(diǎn)D($\frac{1}{7}$,0),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.二項(xiàng)式(1+2x)4展開(kāi)式的各項(xiàng)系數(shù)的和為( 。
A.81B.80C.27D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合M={x|(x-1)=0},那么(  )
A.0∈MB.1∉MC.-1∈MD.0∉M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=Asin(x+φ)(A>0,0<φ<π)的最大值是1,其圖象經(jīng)過(guò)點(diǎn)M($\frac{π}{3}$,$\frac{1}{2}$),則f($\frac{3π}{4}$)=-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知命題p:若x>10,則x>1,那么p的逆否命題為( 。
A.若x>1,則x>10B.若x>10,則x≤1C.若x≤10,則x≤1D.若x≤1,則x≤10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.等腰△ABC中,AB=AC,BD為AC邊上的中線,且BD=3,則△ABC的面積最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),且橢圓上的點(diǎn)到一個(gè)焦點(diǎn)的最短距離為$\frac{\sqrt{3}}{3}$b.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若點(diǎn)M($\sqrt{3}$,$\frac{\sqrt{3}}{2}$)在橢圓C上,不過(guò)原點(diǎn)O的直線l與橢圓C相交于A,B兩點(diǎn),與直線OM相交于點(diǎn)N,且N是線段AB的中點(diǎn),求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)函數(shù)f(x)=ex(ax2+x+1).
(1)若a>0,求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在x=1處有極值,請(qǐng)證明:對(duì)任意$θ∈[{0,\frac{π}{2}}]$時(shí),都有|f(cosθ)-f(sinθ)|<2.

查看答案和解析>>

同步練習(xí)冊(cè)答案