4.已知函數(shù)f(x)=x4-4x3+10x2-27,則方程f(x)=0在[2,10]上的根(  )
A.有3個B.有2個C.有且只有1個D.不存在

分析 先求導(dǎo)f′(x)=4x3-12x2+20x=4x[(x-$\frac{3}{2}$)2+$\frac{11}{4}$],從而得到函數(shù)f(x)=x4-4x3+10x2-27在[2,10]上單調(diào)遞增,再由函數(shù)零點的判定定理從而求得方程f(x)=0在[2,10]上的根的個數(shù).

解答 解:∵f(x)=x4-4x3+10x2-27,
∴f′(x)=4x3-12x2+20x
=4x[(x-$\frac{3}{2}$)2+$\frac{11}{4}$],
∴f(x)=x4-4x3+10x2-27在[2,10]上單調(diào)遞增,
又∵f(2)=16-32+40-27=-3,
f(10)=10000-4000+1000-27=6963,
故方程f(x)=0在[2,10]上的根的個數(shù)為1個.
故選:C

點評 本題考查了導(dǎo)數(shù)的綜合應(yīng)用,同時考查了函數(shù)零點的判定定理,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知四棱錐P-ABCD,PA⊥底面ABCD,其三視圖如下,若M是PD的中點.
(1)求證:PB∥平面MAC;
(2)求證:CD⊥平面PAD;
(3)求直線CM與平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.要得到函數(shù)y=3cos2x的圖象,只需將函數(shù)$y=3cos({2x+\frac{π}{3}})$的圖象(  )
A.向左平移$\frac{π}{3}$個單位長度B.向右平移$\frac{π}{3}$個單位長度
C.向左平移$\frac{π}{6}$個單位長度D.向右平移$\frac{π}{6}$個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.計算下列各題:
(1)$\sqrt{\frac{25}{9}}+{(\frac{27}{64})^{-\frac{1}{3}}}+{π^0}+\root{3}{{{{(-8)}^2}}}$;       
(2)若10x=3,10y=4,求102x-y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)={log_4}({{4^x}+1})+kx$是偶函數(shù).
(1)求k的值;
(2)若函數(shù)$h(x)={4^{f(x)+\frac{1}{2}x}}+m×{2^x}-1,x∈[{0,{{log}_2}3}]$,是否存在實數(shù)m使得h(x)最小值為0,若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=2sin(2x+$\frac{π}{6}$)+a+1(其中a為常數(shù))
(1)求f(x)的單調(diào)區(qū)間;
(2)若x∈[0,$\frac{π}{2}$]時,f(x)的最大值為4,求a的值.
(3)求出使f(x)取得最大值時x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=2x+2x+b,則b為( 。
A.-1B.0C.1D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.全集U=R,集合A={x|-1≤x≤1且x≠0},B={x|x<-1或x>4},則A∩(∁UB)=( 。
A.{x|-2≤x<4}B.{x|x≤3或x≥4}C.{x|-1≤x≤1且x≠0}D.{x|-1≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知正項數(shù)列{an}的前n項和為Sn,當(dāng)n≥2時,(an-Sn-12=SnSn-1,且a1=1,設(shè)bn=log2$\frac{{a}_{n+1}}{6}$,則bn等于(  )
A.2n-3B.2n-4C.n-3D.n-4

查看答案和解析>>

同步練習(xí)冊答案