【題目】設(shè)函數(shù)

Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;

Ⅱ)當時,求函數(shù)上的最大值M

【答案】(Ⅰ)單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(Ⅱ) .

【解析】試題分析:(1)先求導數(shù),再求導函數(shù)零點,列表分析導函數(shù)符號變化規(guī)律,ih根據(jù)導函數(shù)符號確定單調(diào)區(qū)間,2先求導數(shù),再求導函數(shù)零點,討論零點與k大小,根據(jù)導函數(shù)符號確定最大值取法:最大值為.最后利用導數(shù)比較大小,進而確定最大值M

試題解析:Ⅰ)當時, ,

,解得

,解得

,解得

∴函數(shù)的單調(diào)增區(qū)間為,

單調(diào)減區(qū)間為

2)因為,

,解得

因為,

設(shè),

,上是減函數(shù),

,即

, x的變化情況如下表:

0

極小值

∴函數(shù)[0,k]上的最大值為

因為,

,則

對任意的, 的圖象恒在的圖象的下方,

,即

∴函數(shù)上為減函數(shù),

,

,即

∴函數(shù)的最大值

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,左、右焦點分別為,且與拋物線的焦點重合.

(1)求橢圓的標準方程;

(2)若過的直線交橢圓于兩點,過的直線交橢圓于兩點,且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在區(qū)間上的函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某餐廳通過查閱了最近5次食品交易會參會人數(shù) (萬人)與餐廳所用原材料數(shù)量 (袋),得到如下統(tǒng)計表:

第一次

第二次

第三次

第四次

第五次

參會人數(shù) (萬人)

13

9

8

10

12

原材料 (袋)

32

23

18

24

28

(1)根據(jù)所給5組數(shù)據(jù),求出關(guān)于的線性回歸方程.

(2)已知購買原材料的費用 (元)與數(shù)量 (袋)的關(guān)系為

投入使用的每袋原材料相應的銷售收入為700元,多余的原材料只能無償返還,據(jù)悉本次交易大會大約有15萬人參加,根據(jù)(1)中求出的線性回歸方程,預測餐廳應購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤銷售收入原材料費用).

參考公式: , .

參考數(shù)據(jù): , , .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若曲線在點處的切線與直線垂直,求函數(shù)的極值;

(2)設(shè)函數(shù).=時,若區(qū)間[1,e]上存在x0,使得,求實數(shù)的取值范圍.(為自然對數(shù)底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某村計劃建造一個室內(nèi)面積為800m2的矩形蔬菜溫室,在室內(nèi),沿左、右兩側(cè)與后側(cè)內(nèi)墻各保留1m寬的通道,沿前側(cè)內(nèi)墻保留3m寬的空地.當矩形溫室的邊長各為多少時,蔬菜的種植面積最大最大種植面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)求函數(shù)的零點個數(shù);

(2)證明:當,函數(shù)有最小值,設(shè)的最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)的定義域為,若滿足條件:存在,使上的值域為,則稱為“倍縮函數(shù)”.若函數(shù)為“倍縮函數(shù)”,則實數(shù)的取值范圍是

A. (﹣∞,ln2﹣1) B. (﹣∞,ln2﹣1]

C. (1﹣ln2,+∞) D. [1﹣ln2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)若,且函數(shù)的圖象是函數(shù)圖象的一條切線,求實數(shù)的值;

(2)若不等式對任意恒成立,求實數(shù)的取值范圍;

(3)若對任意實數(shù),函數(shù)上總有零點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案