雙曲線C與橢圓有相同的熱點(diǎn),直線y=為C的一條漸近線.
(1) 求雙曲線C的方程;
(2) 過(guò)點(diǎn)P(0,4)的直線l,求雙曲線C于A,B兩點(diǎn),交x軸于Q點(diǎn)(Q點(diǎn)與C的頂點(diǎn)不重合).當(dāng) =,且時(shí),求Q點(diǎn)的坐標(biāo).
解:(Ⅰ)設(shè)雙曲線方程為
由橢圓
求得兩焦點(diǎn)為,
對(duì)于雙曲線,又為雙曲線的一條漸近線
解得,
雙曲線的方程為
(Ⅱ)解法一:
由題意知直線的斜率存在且不等于零。
設(shè)的方程:,
則
∴
∴
∵在雙曲線上,
∴
∴
∴
同理有:
若則直線過(guò)頂點(diǎn),不合題意.∴
∴是二次方程的兩根.
∴
∴,
此時(shí)∴.
∴所求的坐標(biāo)為.
解法二:
由題意知直線的斜率存在且不等于零
設(shè)的方程,,則.
,
∴分的比為.
由定比分點(diǎn)坐標(biāo)公式得
下同解法一
解法三:
由題意知直線的斜率存在且不等于零
設(shè)的方程:,則.
,
∴.
∴,
∴,
又,
∴
即
將代入得
,否則與漸近線平行。
∴。
∴
∴
∴
解法四:
由題意知直線得斜率存在且不等于零,設(shè)的方程:,
則
,
∴。
∴
同理
∴.
即 。 (*)
又
消去得.
當(dāng)時(shí),則直線l與雙曲線得漸近線平行,不合題意,。
由韋達(dá)定理有:
代入(*)式得
所求Q點(diǎn)的坐標(biāo)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(06年山東卷理)(12分)
雙曲線C與橢圓有相同的焦點(diǎn),直線為C的一條漸近線。
(1)求雙曲線C的方程;
(2)過(guò)點(diǎn)的直線,交雙曲線C于A、B兩點(diǎn),交軸于Q點(diǎn)(Q點(diǎn)與C的頂點(diǎn)不重合),當(dāng),且時(shí),求點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年大連市雙基測(cè)試)(12分) 如圖,雙曲線C與橢圓有相同的焦點(diǎn),直線為C的一條漸近線.
(1)求雙曲線C的方程;
(2)過(guò)點(diǎn)P(0,4)的直線l交雙曲線C于A、B兩點(diǎn),交x軸于Q點(diǎn)(Q點(diǎn)與雙曲線C的頂點(diǎn)不重合). 當(dāng),求Q點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆福建省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
已知雙曲線C與橢圓有相同的焦點(diǎn),實(shí)半軸長(zhǎng)為.
(Ⅰ)求雙曲線的方程;
(Ⅱ)若直線與雙曲線有兩個(gè)不同的交點(diǎn)和,且
(其中為原點(diǎn)),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆遼寧省高三第四次階段測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)雙曲線C與橢圓有相同的焦點(diǎn),直線y=為的一條漸近線.
(Ⅰ)求雙曲線的方程;
(Ⅱ)過(guò)點(diǎn)(0,4)的直線,交雙曲線于A,B兩點(diǎn),交x軸于點(diǎn)(點(diǎn)與的頂點(diǎn)不重合)。當(dāng) =,且時(shí),求點(diǎn)的坐標(biāo)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com