分析 (Ⅰ)直接利用向量的數(shù)量積以及二倍角公式兩角和的正弦函數(shù)化簡(jiǎn)函數(shù)表達(dá)式,求出函數(shù)的周期,即可求f(x)的解析式.
(Ⅱ)由tanα=2,得到正弦與余弦值,由此得到解析式的值.
(Ⅲ)通過(guò)$x∈[\frac{π}{6},\frac{π}{3}]$,求出相位的范圍,確定函數(shù)的值域,然后利用|f(x)-m|<2,得到m的關(guān)系式,求實(shí)數(shù)m的取值范圍.
解答 解:(Ⅰ)∵f(x)=$\overrightarrow{a}$•$\overrightarrow$=2sinωxcosωx+$2\sqrt{3}$cos2ωx,
=sin2ωx+$\sqrt{3}$(1+cos2ωx)=2sin(2ωx+$\frac{π}{3}$)+$\sqrt{3}$
∵相鄰兩對(duì)稱(chēng)軸間的距離為π.∴ω=$\frac{1}{2}$,
∴f(x)=2sin(x+$\frac{π}{3}$)+$\sqrt{3}$.
(Ⅱ)∵tanα=f(0)+2-2$\sqrt{3}$=2,
|sinα|=$\frac{2}{\sqrt{5}}$,|cosα|=$\frac{1}{\sqrt{5}}$,且正弦值域余弦值符號(hào)相同.
∴sin2α+sinαcosα+1=$\frac{11}{5}$.
(Ⅲ)∵$x∈[\frac{π}{6},\frac{π}{3}]$,∴x+$\frac{π}{3}$∈[$\frac{π}{2}$,$\frac{2π}{3}$],
∴2$\sqrt{3}$≤f(x)≤2+$\sqrt{3}$
∵|f(x)-m|<2.
∴-2+m<f(x)<2+m,
若對(duì)任意實(shí)數(shù)$x∈[\frac{π}{6},\frac{π}{3}]$,恒有|f(x)-m|<2成立,
則有$\left\{\begin{array}{l}{-2+m≤2\sqrt{3}}\\{2+m≥2+\sqrt{3}}\end{array}\right.$
解得$\sqrt{3}$≤m≤4+2$\sqrt{3}$.
點(diǎn)評(píng) 本題考查向量的數(shù)量積,兩角和與差的三角函數(shù)二倍角公式的應(yīng)用,函數(shù)恒成立問(wèn)題的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若四邊形不是菱形,則它的兩條對(duì)角線不垂直 | |
B. | 若四邊形的兩條對(duì)角線垂直,則它是菱形 | |
C. | 若四邊形的兩條對(duì)角線垂直,則它不是菱形 | |
D. | 若四邊形是菱形,則它的兩條對(duì)角線垂直 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com