分析 (1)利用橢圓與拋物線的定義求解方程;(2)利用直線與橢圓拋物線相交問(wèn)題、一元二次方程的根與系數(shù)的關(guān)系進(jìn)行計(jì)算;(3)通徑計(jì)算公式;(4)利用正弦定理計(jì)算.
解答 解:對(duì)于①,橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,(a>b>0).則2a=|AF1|+|AF2|=7+5=12,得a=6,
設(shè)A(x,y),F(xiàn)1(-c,0),F(xiàn)2(c,0),則(x+c)2+y2=72,(x-c)2+y2=52,
兩式相減得xc=6,由拋物線定義可知|AF2|=x+c=5,
則c=2,x=3或x=2,c=3,又∠AF2F1為鈍角,則x=2,c=3舍去.
曲線C1、C2的方程別為$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{32}$=1(-6≤x≤3)、y2=8x(0≤x≤3),故①正確;
對(duì)于②,當(dāng)直線l⊥x軸時(shí),直線l的方程為x=c,x1x2x3x4=c4
當(dāng)直線l不垂直x軸時(shí),設(shè)B(x1,y1),E(x2,y2),C(x3,y3),D(x4,y4),
聯(lián)立y=$\left\{\begin{array}{l}{y=k(x-c)}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1}\end{array}\right.$,化為(b2+a2k2)x2-2ca2k2x+a2k2c2-a2b2=0,∴x1x2=$\frac{{a}^{2}{k}^{2}{c}^{2}-{a}^{2}^{2}}{^{2}+{a}^{2}{k}^{2}}$,
聯(lián)立 $y=\left\{\begin{array}{l}{y=k(x-c)}\\{{y}^{2}=4cx}\end{array}\right.$ 化為:k2x2-(2ck2+4c)x+k2c2=0,∴x3x4=c2.
∴x1x2x3x4≠c4.因此不為定值,故②錯(cuò);
對(duì)于③,當(dāng)直線l⊥x軸時(shí),直線l的方程為x=c,從而|CD|=2p=4c,|BE|=$\frac{2^{2}}{a}$,
當(dāng)l與x軸垂直時(shí),$\frac{|CD|}{|BE|}$≠$\frac{3}{4}$,故③錯(cuò)
對(duì)于④,連接BF1,EF2,在△BF1F2中,由正弦定理可得$\frac{2c}{sinα}=\frac{B{F}_{1}}{sinγ}=\frac{B{F}_{2}}{sinβ}=\frac{B{F}_{1}+B{F}_{2}}{sinγ+sinβ}=\frac{2a}{sinγ+sinβ}$:正確.∴e=$\frac{c}{a}\\;\\;=\frac{sinα}{sinβ+sinγ}$,故④正確.
故答案:①④
點(diǎn)評(píng) 本題考查了橢圓與拋物線的標(biāo)準(zhǔn)方程、直線與橢圓拋物線相交問(wèn)題、一元二次方程的根與系數(shù)的關(guān)系、通經(jīng)計(jì)算公式、正弦定理,考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ①④ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 1 | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,-1) | B. | (-1,+∞) | C. | (-1,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,2) | B. | (2,3) | C. | (3,4) | D. | (4,5) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com