17.${({{x^2}+\frac{1}{x^2}-2})^3}$展開式中的常數(shù)項(xiàng)為( 。
A.20B.-20C.15D.-15

分析 在二項(xiàng)展開式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng).

解答 解:∵二項(xiàng)式${({{x^2}+\frac{1}{x^2}-2})^3}$=${(x-\frac{1}{x})}^{6}$,它的展開式的通項(xiàng)公式為Tr+1=${C}_{6}^{r}$•(-1)r•x6-2r,
令6-2r=0,求得r=3,可得展開式中的常數(shù)項(xiàng)為-${C}_{6}^{3}$=-20,
故選:B.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知θ是第四象限,且$sin(θ+\frac{π}{4})=\frac{5}{13}$,則$tan(θ-\frac{π}{4})$=-$\frac{12}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某公司有A,B,C,D,E五輛汽車,其中A、B兩輛汽車的車牌尾號(hào)均為1,C、D兩輛汽車的車牌尾號(hào)均為2,E車的車牌尾號(hào)為6,已知在非限行日,每輛車可能出車或不出車,A、B、E三輛汽車每天出車的概率均為$\frac{1}{2}$,C、D兩輛汽車每天出車的概率均為$\frac{2}{3}$,且五輛汽車是否出車相互獨(dú)立,該公司所在地區(qū)汽車限行規(guī)定如下:
車牌尾號(hào)0和51和62和73和84和9
限行日星期一星期二星期三星期四星期五
(1)求該公司在星期一至少有2輛汽車出車的概率;
(2)設(shè)X表示該公司在星期二和星期三兩天出車的車輛數(shù)之和,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,P是A1C1上任意一點(diǎn),記平面PAB、平面PBC與下底面所成的二面角分別為α,β,則tan(α+β)的最小值為-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若a,b,c>0,求證:
a2(b+c)+b2(a+c)+c2(a+b)≤a3+b3+c3+3abc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知角α的終邊經(jīng)過點(diǎn)(3a-9,a+2),且sin2α≤0,sinα>0,則a的取值范圍是( 。
A.(-2,3)B.[-2,3)C.(-2,3]D.[-2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線$\frac{x^2}{6}-\frac{y^2}{3}=1$的焦點(diǎn)為F1、F2,點(diǎn)M在雙曲線上且MF1⊥F1F2,則F1到直線MF2的距離為( 。
A.$\frac{{3\sqrt{6}}}{5}$B.$\frac{{5\sqrt{6}}}{6}$C.$\frac{6}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=(x2-a)e1-x,g(x)=f(x)+ae1-x-a(x-1).
(1)討論f(x)的單調(diào)性;
(2)當(dāng)a=1時(shí),求g(x)在($\frac{3}{4}$,2)上的最大值;
(3)當(dāng)f(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2)時(shí),總有x2f(x1)≤λg′(x1),求實(shí)數(shù)λ的值(g′(x)為g(x)的導(dǎo)函數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知四棱錐P-ABCD中,平面PCD⊥平面ABCD,且PD=PC=$\frac{\sqrt{2}}{2}$CD=$\frac{\sqrt{2}}{2}$BC,∠BCD=$\frac{2π}{3}$,△ABD是等邊三角形,AC∩BD=E.
(1)證明:PC⊥平面PAD;
(2)求二面角P-AB-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案