設(shè)f(n)=1+++ + (n∈N*).
求證:f(1)+f(2)+ +f(n-1)=n·[f(n)-1](n≥2,n∈N*).
應(yīng)用數(shù)學(xué)歸納法.
解析試題分析:①當(dāng)n=2時(shí),左邊=f(1)=1,
右邊=2[1+-1]=1,
左邊=右邊,等式成立.
②假設(shè)n=k時(shí),結(jié)論成立,即
f(1)+f(2)+ +f(k-1)=k[f(k)-1],
那么,當(dāng)n=k+1時(shí),
f(1)+f(2)+ +f(k-1)+f(k)
=k[f(k)-1]+f(k)
=(k+1)f(k)-k
=(k+1)[f(k+1)-]-k
=(k+1)f(k+1)-(k+1)=(k+1)[f(k+1)-1],
所以當(dāng)n=k+1時(shí)結(jié)論仍然成立.
所以f(1)+f(2)+ +f(n-1)=n[f(n)-1](n≥2,n∈N*).
考點(diǎn):本題主要考查數(shù)學(xué)歸納法。
點(diǎn)評(píng):中檔題,利用數(shù)學(xué)歸納法,注意遵循“兩步一結(jié)”。對(duì)數(shù)學(xué)式子變形能力要求較高。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
請(qǐng)觀察以下三個(gè)式子:
①;
②;
③,
歸納出一般的結(jié)論,并用數(shù)學(xué)歸納法證明之.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)點(diǎn)對(duì)應(yīng)的復(fù)數(shù)為,以原點(diǎn)為極點(diǎn),實(shí)軸正半軸為極軸建立極坐標(biāo)系,
則點(diǎn)的極坐標(biāo)可能為( )
A.(3,) | B.(3,) | C.(,) | D.(,) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com