【題目】某英語初學(xué)者在拼寫單詞“”時,對后三個字母的記憶有些模糊,他只記得由“”、“”、“”三個字母組成并且字母“”只可能在最后兩個位置中的某一個位置上如果該同學(xué)根據(jù)已有信息填入上述三個字母,那么他拼寫正確的概率為  

A. B. C. D.

【答案】B

【解析】

由列舉法得到滿足題意的字母組合有四種,拼寫正確的組合只有一種,根據(jù)古典概型概率公式可得結(jié)果.

因?yàn)槟秤⒄Z初學(xué)者在拼寫單詞“”時,

對后三個字母的記憶有些模糊,

他只記得由“”、“”、“”三個字母組成,

并且字母“”只可能在最后兩個位置中的某一個位置上.

該同學(xué)根據(jù)已有信息填入上述三個字母,

滿足題意的字母組合有四種,分別是,

拼寫正確的組合只有一種,

所以他拼寫正確的概率為.故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的類比過程。

(1)在一維直線上,線段是一個封閉的中心對稱圖形,有命題1:不重合的兩點(diǎn)決定一條線段;

(2)在二維平面上,圓是一個封閉的中心對稱圖形,有命題2:不共線的三點(diǎn)決定一個圓;

(3)在三維空間中,球是一個封閉的中心對稱圖形,類比猜想:不共面的四點(diǎn)決定一個球。

證明或否定這個類比猜想:不共面的四點(diǎn)決定一個球。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的實(shí)軸端點(diǎn)分別為,記雙曲線的其中一個焦點(diǎn)為,一個虛軸端點(diǎn)為,若在線段上(不含端點(diǎn))有且僅有兩個不同的點(diǎn),使得,則雙曲線的離心率的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為建設(shè)美麗鄉(xiāng)村,政府欲將一塊長12百米,寬5百米的矩形空地ABCD建成生態(tài)休閑園,園區(qū)內(nèi)有一景觀湖EFG(圖中陰影部分).以AB所在直線為x軸,AB的垂直平分線為y軸,建立平面直角坐標(biāo)系xOy(如圖所示).景觀湖的邊界曲線符合函數(shù)模型.園區(qū)服務(wù)中心P在x軸正半軸上,PO=百米.

(1)若在點(diǎn)O和景觀湖邊界曲線上一點(diǎn)M之間修建一條休閑長廊OM,求OM的最短長度;

(2)若在線段DE上設(shè)置一園區(qū)出口Q,試確定Q的位置,使通道直線段PQ最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是否存在常數(shù)a,b,c,使等式N+都成立,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線方程為.

1)已知直線與雙曲線交于不同的兩點(diǎn),且線段的中點(diǎn)在圓上,求的值;

2)設(shè)直線是圓上動點(diǎn)處的切線,與雙曲線交于不同的兩點(diǎn),證明的大小為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖,過拋物線上一定點(diǎn),作兩條直線分別交拋物線于

(1)求該拋物線上縱坐標(biāo)為的點(diǎn)到其焦點(diǎn)的距離;

(2)當(dāng)的斜率存在且傾斜角互補(bǔ)時,求的值,并證明直線的斜率是非零常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)求該函數(shù)的單調(diào)區(qū)間;

2)若當(dāng)x[2,2]時,不等式fx)<m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,右焦點(diǎn)為,且橢圓過點(diǎn)

(I)求橢圓的方程;

(II)若點(diǎn)分別為橢圓的左右頂點(diǎn),點(diǎn)是橢圓上不同于的動點(diǎn),直線直線x=a交于點(diǎn),證明:以線段為直徑的圓與直線相切.

查看答案和解析>>

同步練習(xí)冊答案