【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,若直線l與曲線C相交于A,B兩點,求△AOB的面積.
【答案】12.
【解析】試題分析:(1)先根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式得到的直角坐標(biāo)方程,利用代入法將直線的參數(shù)方程轉(zhuǎn)化為普通方程,利用點到直線距離公式求得三角形的高,將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,根據(jù)韋達(dá)定理及直線參數(shù)方程的幾何意義可求得,從而根據(jù)三角形面積公式可得結(jié)果.
試題解析:由曲線C的極坐標(biāo)方程是,得ρ2sin2θ=2ρcosθ.
所以曲線C的直角坐標(biāo)方程是y2=2x.
由直線l的參數(shù)方程 (t為參數(shù)),得,
所以直線l的普通方程為.
將直線l的參數(shù)方程代入曲線C的普通方程y2=2x,得,
設(shè)A,B兩點對應(yīng)的參數(shù)分別為t1,t2,
所以,
因為原點到直線的距離,
所以△AOB的面積是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,,令.
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間及極值;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,圓與軸的一個交點為,圓的圓心為,為等邊三角形.
(1)求拋物線的方程
(2)設(shè)圓與拋物線交于、兩點,點為拋物線上介于、兩點之間的一點,設(shè)拋物線在點處的切線與圓交于、兩點,在圓上是否存在點,使得直線、均為拋物線的切線,若存在求點坐標(biāo)(用、表示);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某公司為鄭州園博園生產(chǎn)某特許商品,該公司年固定成本為10萬元,每生產(chǎn)千件需另投入2 .7萬元,設(shè)該公司年內(nèi)共生產(chǎn)該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬元,
且,
(I)寫出年利潤W(萬元〉關(guān)于該特許商品x(千件)的函數(shù)解析式;
〔II〕年產(chǎn)量為多少千件時,該公司在該特許商品的生產(chǎn)中所獲年利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為1的正方體中,點是對角線上的動點(點與不重合),則下列結(jié)論正確的是____.
①存在點,使得平面平面;
②存在點,使得平面;
③的面積不可能等于;
④若分別是在平面與平面的正投影的面積,則存在點,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某專營店經(jīng)銷某商品,當(dāng)售價不高于10元時,每天能銷售100件,當(dāng)價格高于10元時,每提高1元,銷量減少3件,若該專營店每日費用支出為500元,用x表示該商品定價,y表示該專營店一天的凈收入(除去每日的費用支出后的收入).
(1)把y表示成x的函數(shù);
(2)試確定該商品定價為多少元時,一天的凈收入最高?并求出凈收入的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)一位高三班主任對本班50名學(xué)生學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行調(diào)查,得到的統(tǒng)計數(shù)據(jù)如表所示:
積極參加班級工作 | 不積極參加班級工作 | 合計 | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性不高 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
(1)如果隨機(jī)調(diào)查這個班的一名學(xué)生,那么抽到不積極參加班級工作且學(xué)習(xí)積極性不高的學(xué)生的概率是多少?
(2)若不積極參加班級工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取2名學(xué)生參加某項活動,問2名學(xué)生中有1名男生的概率是多少?
(3)學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度是否有關(guān)系?請說明理由.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一年級學(xué)生全部參加了體育科目的達(dá)標(biāo)測試,現(xiàn)從中隨機(jī)抽取40名學(xué)生的測試成
績,整理數(shù)據(jù)并按分?jǐn)?shù)段,,,,,進(jìn)行分
組,已知測試分?jǐn)?shù)均為整數(shù),現(xiàn)用每組區(qū)間的中點值代替該組中的每個數(shù)據(jù),則得到體育成績的折
線圖如下:
(1)若體育成績大于或等于70分的學(xué)生為“體育良好”,已知該校高一年級有1000名學(xué)生,試估計該校高一年級學(xué)生“體育良好”的人數(shù);
(2)為分析學(xué)生平時的體育活動情況,現(xiàn)從體育成績在和的樣本學(xué)生中隨機(jī)抽取2人,求所抽取的2名學(xué)生中,至少有1人為“體育良好”的概率;
(3)假設(shè)甲、乙、丙三人的體育成績分別為,,,且,,
,當(dāng)三人的體育成績方差最小時,寫出,,的值(不要求證明).
注:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校倡導(dǎo)為特困學(xué)生募捐,要求在自動購水機(jī)處每購買一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計了連續(xù)5天的售出礦泉水箱數(shù)和收入情況,列表如下:
售出水量(單位:箱) | 7 | 6 | 6 | 5 | 6 |
收入(單位:元) | 165 | 142 | 148 | 125 | 150 |
學(xué)校計劃將捐款以獎學(xué)金的形式獎勵給品學(xué)兼優(yōu)的特困生,規(guī)定:特困生綜合考核前20名,獲一等獎學(xué)金500元;綜合考核21-50名,獲二等獎學(xué)金300元;綜合考核50名以后的不獲得獎學(xué)金.
(1)若與成線性相關(guān),則某天售出9箱水時,預(yù)計收入為多少元?
(2)甲乙兩名學(xué)生獲一等獎學(xué)金的概率均為,獲二等獎學(xué)金的概率均為,不獲得獎學(xué)金的概率均為,已知甲乙兩名學(xué)生獲得哪個等級的獎學(xué)金相互獨立,求甲乙兩名學(xué)生所獲得獎學(xué)金之和的分布列及數(shù)學(xué)期望;
附:回歸方程,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com