【題目】在三棱錐P﹣ABC中,AB=1,BC=2,AC,PC,PA,PB,E是線段BC的中點(diǎn).
(1)求點(diǎn)C到平面APE的距離d;
(2)求二面角P﹣EA﹣B的余弦值.
【答案】(1);(2).
【解析】
(1)建立空間直角坐標(biāo)系,求出平面的法向量,利用向量的距離公式得解;(2)求出兩個(gè)平面的法向量,利用向量公式求解.
∵AB2+BC2=AC2,PC2+BC2=PB2,PA2+AB2=PB2,
∴,
過點(diǎn)P作PO⊥平面ABC,垂足為O,易得OP=1,且BC⊥OC,BA⊥OA,
∴四邊形ABCO為矩形,
(1)以O為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,
則C(1,0,0),E(1,1,0),A(0,2,0),P(0,0,1),
,
設(shè)平面APE的法向量為,則,
令x=1,則,
∴;
(2)由(1)知平面APE的法向量為,取平面ABE的一個(gè)法向量,
且二面角P﹣EA﹣B為鈍角,設(shè)其為θ,故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年11月6日-11日,第十二屆中國(guó)國(guó)際航空航天博覽會(huì)在珠海舉行。在航展期間,從珠海市區(qū)開車前往航展地有甲、乙兩條路線可走,已知每輛車走路線甲堵車的概率為,走路線乙堵車的概率為p,若現(xiàn)在有A,B兩輛汽車走路線甲,有一輛汽車C走路線乙,且這三輛車是否堵車相互之間沒有影響。
(1)若這三輛汽車中恰有一輛汽車被堵的概率為,求p的值。
(2)在(1)的條件下,求這三輛汽車中被堵車輛的輛數(shù)X的分布列和數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年9月支付寶宣布在肯德基的KPRO餐廳上線刷臉支付,也即用戶可以不用手機(jī),單單通過刷臉就可以完成支付寶支付,這也是刷臉支付在全球范圍內(nèi)的首次商用試點(diǎn).某市隨機(jī)抽查了每月用支付寶消費(fèi)金額不超過3000元的男女顧客各300人,調(diào)查了他們的支付寶使用情況,得到如下頻率分布直方圖:
若每月利用支付寶支付金額超過2千元的顧客被稱為“支付寶達(dá)人”, 利用支付寶支付金額不超過2千元的顧客稱為“非支付寶達(dá)人”.
(I)若抽取的“支付寶達(dá)人”中女性占120人,請(qǐng)根據(jù)條件完成上面的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為“支付寶達(dá)人”與性別有關(guān).
(II)支付寶公司為了進(jìn)一步了解這600人的支付寶使用體驗(yàn)情況和建議,從“非支付寶達(dá)人” “支付寶達(dá)人”中用分層抽樣的方法抽取8人.若需從這8人中隨機(jī)選取2人進(jìn)行問卷調(diào)查,求至少有1人是“支付寶達(dá)人”的概率.
附:參考公式與參考數(shù)據(jù)如下
,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在平面直角坐標(biāo)系中,N為圓C:上的一動(dòng)點(diǎn),點(diǎn)D(1,0),點(diǎn)M是DN的中點(diǎn),點(diǎn)P在線段CN上,且.
(Ⅰ)求動(dòng)點(diǎn)P表示的曲線E的方程;
(Ⅱ)若曲線E與x軸的交點(diǎn)為,當(dāng)動(dòng)點(diǎn)P與A,B不重合時(shí),設(shè)直線與的斜率分別為,證明:為定值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)O為坐標(biāo)原點(diǎn),橢圓C:(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為,點(diǎn)I,J分別是橢圓C的右頂點(diǎn)、上頂點(diǎn),△IOJ的邊IJ上的中線長(zhǎng)為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)H(-2,0)的直線交橢圓C于A,B兩點(diǎn),若AF1⊥BF1,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年9~12月某市郵政快遞業(yè)務(wù)量完成件數(shù)較2017年9~12月同比增長(zhǎng)25%,該市2017年9~12月郵政快遞業(yè)務(wù)量柱形圖及2018年9~12月郵政快遞業(yè)務(wù)量結(jié)構(gòu)扇形圖如圖所示,根據(jù)統(tǒng)計(jì)圖,給出下列結(jié)論:
①2018年9~12月,該市郵政快遞業(yè)務(wù)量完成件數(shù)約1500萬件;
②2018年9~12月,該市郵政快遞同城業(yè)務(wù)量完成件數(shù)與2017年9~12月相比有所減少;
③2018年9~12月,該市郵政快遞國(guó)際及港澳臺(tái)業(yè)務(wù)量同比增長(zhǎng)超過75%,其中正確結(jié)論的個(gè)數(shù)為( )
A. 3
B. 2
C. 1
D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知無窮等比數(shù)列的首項(xiàng)、公比均為.
(1)試求無窮等比子數(shù)列各項(xiàng)的和;
(2)是否存在數(shù)列的一個(gè)無窮等比子數(shù)列,使得它各項(xiàng)的和為?若存在,求出所有滿足條件的子數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過作動(dòng)直線交橢圓于兩點(diǎn),為平面上一點(diǎn),直線的斜率分別為,且滿足,問點(diǎn)是否在某定直線上運(yùn)動(dòng),若存在,求出該直線方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雅山中學(xué)采取分層抽樣的方法從應(yīng)屆高三學(xué)生中按照性別抽出20名學(xué)生作為樣本,其選報(bào)文科理科的情況如下表所示.
男 | 女 | |
文科 | 2 | 5 |
理科 | 10 | 3 |
(Ⅰ)若在該樣本中從報(bào)考文科的學(xué)生中隨機(jī)地選出3人召開座談會(huì),試求3人中既有男生也有女生的概率;
(Ⅱ)用假設(shè)檢驗(yàn)的方法分析有多大的把握認(rèn)為雅山中學(xué)的高三學(xué)生選報(bào)文理科與性別有關(guān)?
參考公式和數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.07 | 2.71 | 3.84 | 5.02 | 6.64 | 7.88 | 10.83 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com