【題目】如圖,長方體中,,,,點分別在上,
(1)求直線與所成角的余弦值;
(2)過點的平面與此長方體的表面相交,交線圍成一個正方形,求平面把該長方體分成的兩部分體積的比值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將標號為1,2,…,20的20張卡片放入下列表格中,一個格放入一張卡片.把每列標號最小的卡片選出,將這些卡片中標號最大的數(shù)設(shè)為a;把每行標號最大的卡片選出,將這些卡片中標號最小的數(shù)設(shè)為b.
甲同學(xué)認為a有可能比b大,乙同學(xué)認為a和b有可能相等.那么甲乙兩位同學(xué)中說法正確的同學(xué)是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五面體中,面是直角梯形,,,面是菱形,,,.
(I)證明:;
(I)已知點在線段上,且,若二面角的大小為,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列、滿足,其中數(shù)列的前項和,
(1)若數(shù)列是首項為.公比為的等比數(shù)列,求數(shù)列的通項公式;
(2)若,求證:數(shù)列滿足,并寫出的通項公式;
(3)在(2)的條件下,設(shè),求證中任意一項總可以表示成該數(shù)列其它兩項之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,直線的傾斜角為,且經(jīng)過點.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.
(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標方程;
(Ⅱ)設(shè)直線與曲線C交于P,Q兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“工資條里顯紅利,個稅新政入民心”.隨著2019年新年鐘聲的敲響,我國自1980年以來,力度最大的一次個人所得稅(簡稱個稅)改革迎來了全面實施的階段.某從業(yè)者為了解自己在個稅新政下能享受多少稅收紅利,繪制了他在26歲-35歲(2009年-2018年)之間各年的月平均收入(單位:千元)的散點圖:(注:年齡代碼1-10分別對應(yīng)年齡26-35歲)
(1)由散點圖知,可用回歸模型擬合與的關(guān)系,試根據(jù)有關(guān)數(shù)據(jù)建立關(guān)于的回歸方程;
(2)如果該從業(yè)者在個稅新政下的專項附加扣除為3000元/月,試利用(1)的結(jié)果,將月平均收入視為月收入,根據(jù)新舊個稅政策,估計他36歲時每個月少繳納的個人所得稅.
附注:①參考數(shù)據(jù):,,,,
,,,其中:取,.
②參考公式:回歸方程中斜率和截距的最小二乘估計分別為,.
③新舊個稅政策下每月應(yīng)納稅所得額(含稅)計算方法及稅率表如下:
舊個稅稅率表(個稅起征點3500元) | 新個稅稅率表(個稅起征點5000元) | |||
繳稅 級數(shù) | 每月應(yīng)納稅所得額(含稅)收入個稅起征點 | 稅率 | 每月應(yīng)納稅所得額(含稅)收入個稅起征點專項附加扣除 | 稅率 |
1 | 不超過1500元的都分 | 3 | 不超過3000元的都分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 超過12000元至25000元的部分 | 20 |
4 | 超過9000元至35000元的部分 | 25 | 超過25000元至35000元的部分 | 25 |
5 | 超過35000元至55000元的部分 | 30 | 超過35000元至55000元的部分 | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過點A(2,-1),和直線x+y=1相切,且圓心在直線y=-2x上.
(1)求圓C的方程;
(2)已知直線l經(jīng)過(2,0)點,并且被圓C截得的弦長為2,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列推理不屬于合情推理的是( )
A. 由銅、鐵、鋁、金、銀等金屬能導(dǎo)電,得出一切金屬都能導(dǎo)電.
B. 半徑為的圓面積,則單位圓面積為.
C. 由平面三角形的性質(zhì)推測空間三棱錐的性質(zhì).
D. 猜想數(shù)列2,4,8,…的通項公式為. .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com