【題目】若樣本的平均數(shù)是,方差是,則對樣本,下列結(jié)論正確的是 ( )

A. 平均數(shù)為14,方差為5 B. 平均數(shù)為13,方差為25

C. 平均數(shù)為13,方差為5 D. 平均數(shù)為14,方差為2

【答案】C

【解析】

根據(jù)平均數(shù)和方差的定義和性質(zhì)進行求解即可.

樣本1+x1,1+x2,1+x3,…,1+xn的平均數(shù)是12,方差為5,

∴1+x1+1+x2+1+x3+…+1+xn=12n,

即x1+x2+x3+…+xn=12n﹣n=11n,

方差S2=[(1+x1﹣12)2+(1+x2﹣12)2+…+(1+xn﹣12)2]=[(x1﹣11)2+(x2﹣11)2+…+(xn﹣11)2]=5,

(2+x1+2+x2+…+2+xn)==13,

樣本2+x1,2+x2,…,2+xn的方差S2=[(2+x1﹣13)2+(2+x2﹣13)2+…+(2+xn﹣13)2]

=[(x1﹣11)2+(x2﹣11)2+…+(xn﹣11)2]=5,

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,其中是自然對數(shù)的底數(shù).

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)令,討論的單調(diào)性并判斷有無極值,有極值時求出極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若命題p:函數(shù)y=x2﹣2x的單調(diào)遞增區(qū)間是[1,+∞),命題q:函數(shù)y=x﹣ 的單調(diào)遞增區(qū)間是[1,+∞),則(
A.p∧q是真命題
B.p∨q是假命題
C.非p是真命題
D.非q是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式的解集為(1,t),記函數(shù).

(1)求證:函數(shù)y=f(x)必有兩個不同的零點;

(2)若函數(shù)y=f(x)的兩個零點分別為,,試將表示成以為自變量的函數(shù),并求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(cosx+sinx,2sinx), =(cosx﹣sinx,cosx).令f(x)=
(1)求f(x)的最小正周期;
(2)求f(x)在[ , ]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)關(guān)于x的一元二次方程,其中a,b是某范圍內(nèi)的隨機數(shù),分別在下列條件下,求上述方程有實根的概率.

(1)若隨機數(shù)a,b∈{1,2,3,4,5,6};

(2)若a是從區(qū)間[0,5]中任取的一個數(shù),b是從區(qū)間[2,4]中任取的一個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.

Ⅰ)由折線圖看出,可用線性回歸模型擬合yt的關(guān)系,請用相關(guān)系數(shù)加以說明;

Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測2016年我國生活垃圾無害化處理量.

附注:

參考數(shù)據(jù):,

≈2.646.

參考公式:相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖所示的程序框圖,則該算法的功能是(

A.計算數(shù)列{2n1}前5項的和
B.計算數(shù)列{2n﹣1}前5項的和
C.計算數(shù)列{2n1}前6項的和
D.計算數(shù)列{2n﹣1}前6項的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=ax3﹣3x2+1(a>0),定義h(x)=max{f(x),g(x)}=
(1)求函數(shù)f(x)的極值;
(2)若g(x)=xf'(x),且存在x∈[1,2]使h(x)=f(x),求實數(shù)a的取值范圍;
(3)若g(x)=lnx,試討論函數(shù)h(x)(x>0)的零點個數(shù).

查看答案和解析>>

同步練習(xí)冊答案