20.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$+2$\overrightarrow$|=2$\sqrt{7}$,則|$\overrightarrow$|=4.

分析 把|$\overrightarrow{a}$+2$\overrightarrow$|=2$\sqrt{7}$兩邊平方,代入數(shù)量積公式,化為關(guān)于$|\overrightarrow|$的一元二次方程求解.

解答 解:由|$\overrightarrow{a}$+2$\overrightarrow$|=2$\sqrt{7}$,得$(\overrightarrow{a}+2\overrightarrow)^{2}={\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow+4{\overrightarrow}^{2}=28$,
即$|\overrightarrow{a}{|}^{2}+4|\overrightarrow{a}||\overrightarrow|cos120°+4|\overrightarrow{|}^{2}=28$,
則$|\overrightarrow{|}^{2}-|\overrightarrow|-12=0$,
解得$|\overrightarrow|=-3$(舍)或$|\overrightarrow|=4$.
故答案為:4.

點(diǎn)評 本題考查平面向量的數(shù)量積運(yùn)算,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知y∈R,復(fù)數(shù)z=(2+2y)+(y-1)i,當(dāng)y為何值時:
(1)z∈R?
(2)z是純虛數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知(1-$\frac{x}{2}$)2n=a0+a1x+a2x2+…+a2nx2n(x∈N*
(1)當(dāng)n=5時,求系數(shù)ai的最大值和最小值;
(2)若a3=-$\frac{1}{2}$,求n的值;
(3)求證:an<$\frac{2^n}{{\sqrt{2n+1}}}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若變量x、y、z滿足約束條件$\left\{\begin{array}{l}{\stackrel{x+2y≥0}{x-y≤0}}\\{x-2y+2≥0}\end{array}\right.$,且m∈(-7,3),則z=$\frac{y}{x-m}$僅在點(diǎn)A(-1,$\frac{1}{2}$)處取得最大值的概率為( 。
A.$\frac{2}{7}$B.$\frac{1}{9}$C.$\frac{1}{10}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.鷹潭市龍虎山花語世界位于中國第八處世界自然遺產(chǎn),世界地質(zhì)公元、國家自然文化雙遺產(chǎn)地、國家AAAAA級旅游景區(qū)--龍虎山主景區(qū)排衙峰下,是一座獨(dú)具現(xiàn)代園藝風(fēng)格的花卉公園,園內(nèi)匯集了3000余種花卉苗木,一年四季姹紫嫣紅花香四溢.花園景觀融合法、英、意、美、日、中六大經(jīng)典園林風(fēng)格,景觀設(shè)計唯美新穎.玫瑰花園、香草花溪、臺地花海、植物迷宮、兒童樂園等景點(diǎn)錯落有致,交相呼應(yīng)又自成一體,是世界園藝景觀的大展示.該景區(qū)自2015年春建成試運(yùn)行以來,每天游人如織,郁金香、向日葵、虞美人等賞花旺季日入園人數(shù)最高達(dá)萬人.某學(xué)校社團(tuán)為了解進(jìn)園旅客的具體情形以及采集旅客對園區(qū)的建議,特別在2017年4月1日賞花旺季對進(jìn)園游客進(jìn)行取樣調(diào)查,從當(dāng)日12000名游客中抽取100人進(jìn)行統(tǒng)計分析,結(jié)果如下:(表一)
年齡頻數(shù)頻率
[0,10)100.155
[10,20)
[20,30)250.251213
[30,40)200.21010
[40,50)100.164
[50,60)100.137
[60,70)50.0514
[70,80)30.0312
[80,90)20.0202
合計1001.004555
(1)完成表格一中的空位①-④,并在答題卡中補(bǔ)全頻率分布直方圖,并估計2017年4月1日當(dāng)日接待游客中30歲以下人數(shù).
(2)完成表格二,并問你能否有97.5%的把握認(rèn)為在觀花游客中“年齡達(dá)到50歲以上”與“性別”相關(guān)?
 50歲以上50歲以下合計
男生   
女生   
合計   
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(3)按分層抽樣(分50歲以上與50以下兩層)抽取被調(diào)查的100位游客中的10人作為幸運(yùn)游客免費(fèi)領(lǐng)取龍虎山內(nèi)部景區(qū)門票,再從這10人中選取2人接受電視臺采訪,設(shè)這2人中年齡在50歲以上(含)的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如果a<b<0,那么下列不等式中成立的是( 。
A.$\frac{1}{a}$<$\frac{1}$B.ab<b2C.a2b<ab2D.(a-b)c2>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在平面直角坐標(biāo)系中,過定點(diǎn)M(0,-$\frac{1}{3}$) 的直線l交橢圓$\frac{x^2}{2}$+y2=1于P,Q兩點(diǎn),則以PQ為直徑的圓恒過x軸上方的定點(diǎn)( 。
A.(-1,$\frac{1}{3}$)B.(0,$\frac{1}{2}$)C.(0,1)D.(1,$\frac{1}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)左右焦點(diǎn)分別為F1,F(xiàn)2,漸近線為l1,l2,P位于l1在第一象限內(nèi)的部分,若l2⊥PF1,l2∥PF2,則雙曲線的離心率為( 。
A.2B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知a,b,c分別是△ABC的內(nèi)角A,B.C所對的邊,點(diǎn)M為△ABC的重心.若a$\overrightarrow{MA}$+b$\overrightarrow{MB}$+$\frac{\sqrt{3}}{3}$c$\overrightarrow{MC}$=0,則C=( 。
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

同步練習(xí)冊答案