6.cos555°的值為( 。
A.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$B.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$C.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$D.$-\frac{{\sqrt{6}+\sqrt{2}}}{4}$

分析 直接利用誘導(dǎo)公式化簡(jiǎn)cos555°為cos15°,通過(guò)兩角差的余弦函數(shù)求解即可.

解答 解:cos555°=cos(720°-165°)=cos165°=-cos15°=-cos45°cos30°-sin45°sin30°=$-\frac{{\sqrt{6}+\sqrt{2}}}{4}$.
故選:D.

點(diǎn)評(píng) 本題是基礎(chǔ)題,考查誘導(dǎo)公式的應(yīng)用,兩角差的余弦函數(shù)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.一個(gè)球體的表面積是4π,則這個(gè)球體的體積是$\frac{4}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.兩座燈塔A,B與海洋觀察站C的距離分別為a海里、2a海里,燈塔A在觀察站的北偏東35°,燈塔B在觀察站的南偏東25°,則燈塔A與燈塔B的距離為( 。
A.3a海里B.$\sqrt{7}$a海里C.$\sqrt{5}$a海里D.$\sqrt{3}$a海里

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知f(x)=-x2+2mx-m2-1的單調(diào)遞增區(qū)間與函數(shù)值域相同,則實(shí)數(shù)m=( 。
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.拋擲一均勻的正方體玩具(各面分別標(biāo)有數(shù)字1、2、3、4、5、6),事件A表示“朝上一面的數(shù)是奇數(shù)”,事件B表示“朝上一面的數(shù)不超過(guò)3”,則P(A∪B)=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知α,β∈(0,$\frac{π}{2}$),滿(mǎn)足tan(α+β)=4tanβ,則tanα的最大值為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在($\frac{2}{x}$+$\sqrt{x}$)n的展開(kāi)式中,各項(xiàng)系數(shù)之和為M,各二項(xiàng)式系數(shù)之和為N,且8M=27N,則展開(kāi)式中的常數(shù)項(xiàng)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角為30°,已知$\overrightarrow{a}$=(-1,$\sqrt{2}$),|$\overrightarrow$|=2,則|$\overrightarrow{a}$+$\overrightarrow$|=( 。
A.$2\sqrt{3}$B.$2\sqrt{6}$C.$4\sqrt{3}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿(mǎn)足f(x)+g(x)=x2+3x+1.則f(x)=x2+1.

查看答案和解析>>

同步練習(xí)冊(cè)答案