分析 先分別求出P(A)、P(B)、P(AB),由此利用P(A∪B)=P(A)+P(B)-P(AB),能求出結果.
解答 解:∵拋擲一均勻的正方體玩具(各面分別標有數(shù)字1、2、3、4、5、6),
事件A表示“朝上一面的數(shù)是奇數(shù)”,事件B表示“朝上一面的數(shù)不超過3”,
∴P(A)=$\frac{3}{6}$=$\frac{1}{2}$,P(B)=$\frac{3}{6}=\frac{1}{2}$,P(AB)=$\frac{2}{6}=\frac{1}{3}$,
∴P(A∪B)=P(A)+P(B)-P(AB)=$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}=\frac{2}{3}$.
故答案為:$\frac{2}{3}$.
點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意任意事件概率加法公式的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{6}+\sqrt{2}}}{4}$ | B. | $\frac{{\sqrt{2}-\sqrt{6}}}{4}$ | C. | $\frac{{\sqrt{6}-\sqrt{2}}}{4}$ | D. | $-\frac{{\sqrt{6}+\sqrt{2}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=sin($\frac{x}{2}$-$\frac{π}{8}$) | B. | y=sin($\frac{x}{2}$+$\frac{π}{8}$) | C. | y=sin(2x-$\frac{π}{8}$) | D. | y=sin(2x-$\frac{π}{4}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com