A. | 10 | B. | 8 | C. | 5 | D. | 1 |
分析 作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,進行求最值即可.
解答 解:由z=x+3y,得$y=-\frac{1}{3}x+\frac{z}{3}$,作出不等式對應的可行域,
平移直線$y=-\frac{1}{3}x+\frac{z}{3}$,由平移可知當直線$y=-\frac{1}{3}x+\frac{z}{3}$,經(jīng)過點A時,
直線$y=-\frac{1}{3}x+\frac{z}{3}$,的截距最大,此時z取得最大值,
由$\left\{\begin{array}{l}{x=1}\\{2x+y=5}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即A(1,3),
代入z=x+3y,得z=1+3×3=10,
即目標函數(shù)z=x+3y的最大值為10.
故選:A.
點評 本題主要考查線性規(guī)劃的基本應用,利用目標函數(shù)的幾何意義是解決問題的關鍵,利用數(shù)形結(jié)合是解決問題的基本方法.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ∅ | B. | (-2,1) | C. | (3,4) | D. | (4,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,2) | B. | (-∞,1) | C. | (1,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-2≤x≤2} | B. | {x|x≥2} | C. | {x|0≤x≤2} | D. | ∅ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com