13.在直角坐標系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為:ρsin(θ+$\frac{π}{4}}$)=1.直線l與曲線C相交于點A,B.
(1)求直線l的直角坐標方程;
(2)若直線l與y軸交于點P,求|PB|•|PA|.

分析 (1)直線l的極坐標方程為:ρsin(θ+$\frac{π}{4}}$)=1,展開為:$\frac{\sqrt{2}}{2}$ρ(sinθ+cosθ)=1,利用互化公式可得直角坐標方程.
(2)曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù)),利用平方關系消去參數(shù)化為普通方程.把直線l的參數(shù)方程$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{2}+\frac{\sqrt{2}}{2}t}\end{array}\right.$,代入橢圓方程可得:2t2+6t+3=0,利用|PB|•|PA|=|t1t2|即可得出.

解答 解:(1)直線l的極坐標方程為:ρsin(θ+$\frac{π}{4}}$)=1,展開為:$\frac{\sqrt{2}}{2}$ρ(sinθ+cosθ)=1,可得直角坐標方程:x+y-$\sqrt{2}$=0.
(2)曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù)),消去參數(shù)化為:$\frac{{x}^{2}}{3}$+y2=1.
直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{2}+\frac{\sqrt{2}}{2}t}\end{array}\right.$,(t為參數(shù))代入橢圓方程可得:2t2+6t+3=0,
∴t1t2=$\frac{3}{2}$.
∴|PB|•|PA|=|t1t2|=$\frac{3}{2}$.

點評 本題考查了極坐標方程化為直角坐標方程、參數(shù)方程化為普通方程及其應用,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.設a=0.80.8,b=0.81.2,c=1.20.8則( 。
A.c>a>bB.c>b>aC.a>b>cD.b>a>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y≤1}\\{2x+y≤5}\\{x≥1}\end{array}\right.$,則函數(shù)z=x+3y的最大值為(  )
A.10B.8C.5D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.經(jīng)過兩點(5,0),(2,-5)的直線方程為( 。
A.5x+3y-25=0B.5x-3y-25=0C.3x-5y-25=0D.5x-3y+25=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知△ABC中,內(nèi)角A、B、C所對的邊分別是a,b,c,且bsin2C=csinB.
(1)求角C;
(2)若△ABC為銳角三角形,求$\sqrt{3}$sinBcosB+cos2B的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.不等式|x+2|>|x-1|的解集為(-$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=alnx-x2(a∈R).
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)對于(0,1)內(nèi)的任意兩個相異實數(shù)p、q,恒有$\frac{f(p+1)-f(q+1)}{p-q}$>1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知數(shù)列{an}是公差為-2的等差數(shù)列,且a3=a2+a5
(Ⅰ)求數(shù)列{an}的通項公式.
(Ⅱ)求數(shù)列{an}的前n項和Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知F是橢圓C1:$\frac{{x}^{2}}{4}$+y2=1與雙曲線C2的一個公共焦點,A,B分別是C1,C2在第二、四象限的公共點.若$\overrightarrow{AF}$•$\overrightarrow{BF}$=0,則C2的離心率是$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

同步練習冊答案