17.設(shè)點M(2,1,3)是直角坐標系O-xyz中一點,則點M關(guān)于x軸對稱的點的坐標為( 。
A.(2,-1,-3)B.(-2,1,-3)C.(-2,-1,3)D.(-2,-1,-3)

分析 利用軸對稱的性質(zhì)即可得出.

解答 解:點M(2,1,3)關(guān)于x軸對稱的點的坐標為(2,-1,-3).
故選:A.

點評 本題考查了軸對稱性,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知a∈R,“函數(shù)y=logax在(0,+∞)上為減函數(shù)”是“函數(shù)y=3x+a-1有零點”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)集合A={x|x2<9},B={x|(x-2)(x+4)<0}.
(1)求集合A∩B;
(2)若不等式2x2+ax+b<0的解集為A∪B,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)y=f(x)是奇函數(shù),當x<0時,f(x)=x2+ax(a∈R),且f(2)=6,則f(1)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,某廣場中間有一塊邊長為2百米的菱形狀綠化區(qū)ABCD,其中BMN是半徑為1百米的扇形,∠ABC=$\frac{2π}{3}$.管理部門欲在該地從M到D修建小路:在$\widehat{MN}$上選一點P(異于M、N兩點),過點P修建與BC平行的小路PQ.
(1)若∠PBC=$\frac{π}{3}$,求PQ的長度;
(2)當點P選擇在何處時,才能使得修建的小路$\widehat{MP}$與PQ及QD的總長最。坎⒄f明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知點A($\sqrt{3}$+1,0),B(0,2).若直線l:y=k(x-1)+1與線段AB相交,則直線l傾斜角α的取值范圍是( 。
A.[$\frac{3π}{4}$,$\frac{5π}{6}$]B.[0,$\frac{3π}{4}$]C.[0,$\frac{3π}{4}$]∪[$\frac{5π}{6}$,π)D.[$\frac{5π}{6}$,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求圓心在直線y=2x上,并且經(jīng)過點A(0,-2),與直線x-y-2=0相切的圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x2+2bx+5(b∈R).
(1)若b=2,試解不等式f(x)<10;
(2)若f(x)在區(qū)間[-4,-2]上的最小值為-11,試求b的值;
(3)若|f(x)-5|≤1在區(qū)間(0,1)上恒成立,試求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.有一張畫有內(nèi)接正方形的圓形紙片,若隨機向圓形紙片內(nèi)丟一粒小豆子,則豆子落入正方形內(nèi)的概率為$\frac{2}{π}$.

查看答案和解析>>

同步練習(xí)冊答案