5.已知函數(shù)f(x)=|2x-a|+a(a∈R).
(1)當a=-1時,解不等式f(x)≤|2x-1|;
(2)若a≥0,f(x)≤2,求證:|x|≤a+1.

分析 (1)解法一:當a=-1時,不等式即|x+$\frac{1}{2}$|-|x-$\frac{1}{2}$|≤$\frac{1}{2}$,再利用絕對值的意義求得不等式f(x)≤|2x-1|的解集.
解法二:把要解的不等式等價轉(zhuǎn)化為與之等價的三個不等式組,求出每個不等式組的解集,再取并集,即得所求.
(2)由條件|2x-a|+a≤2,利用絕對值三角不等式證得|x|≤1,從而證得結(jié)論.

解答 解:(1)解法一:當a=-1時,解不等式f(x)≤|2x-1|,
即|2x+1|-1≤|2x-1|,即|x+$\frac{1}{2}$|-|x-$\frac{1}{2}$|≤$\frac{1}{2}$.
而|x+$\frac{1}{2}$|-|x-$\frac{1}{2}$|表示數(shù)軸上的x對應(yīng)點到-$\frac{1}{2}$對應(yīng)點的距離
減去它到$\frac{1}{2}$對應(yīng)點的距離,
而$\frac{1}{4}$對應(yīng)點到-$\frac{1}{2}$對應(yīng)點的距離減去它到$\frac{1}{2}$對應(yīng)點的距離正好等于$\frac{1}{2}$,
故不等式f(x)≤|2x-1|的解集為{x|x≤$\frac{1}{4}$}.
解法二:不等式f(x)≤|2x-1|,即|2x+1|-|2x-1|≤1,
∴$\left\{\begin{array}{l}{x<-\frac{1}{2}}\\{-2x-1-(1-2x)≤1}\end{array}\right.$ ①,或 $\left\{\begin{array}{l}{-\frac{1}{2}≤x<\frac{1}{2}}\\{2x+1-(1-2x)≤1}\end{array}\right.$②,或$\left\{\begin{array}{l}{x≥\frac{1}{2}}\\{2x+1-(2x-1)≤1}\end{array}\right.$③.
解①求得x<-$\frac{1}{2}$,解②求得-$\frac{1}{2}$≤x≤$\frac{1}{4}$,解求得x∈∅.
綜上可得,不等式f(x)≤|2x-1|的解集為{x|x≤$\frac{1}{4}$}.
(2)證明:∵f(x)=|2x-a|+a≤2,而由絕對值三角不等式可得|2x-a|≥|2x|-|a|=|2x|-a,
∴|2x|-a+a≤2,即 2|x|≤2,即|x|≤1.
又∵a≥0,∴|x|≤a+1成立.

點評 本題主要考查絕對值的意義,絕對值三角不等式的應(yīng)用,體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在三棱錐P-ABC中,三條側(cè)棱PA,PB,PC兩兩垂直,且PA=PB=3,PC=4,又M是底面ABC內(nèi)一點,則M到三個側(cè)面的距離的平方和的最小值是$\frac{144}{41}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在極坐標系中,已知等邊三角形的兩個頂點是A(2,$\frac{π}{4}$),B(2,$\frac{5π}{4}$),那么另一個頂點C的坐標可能是( 。
A.(4,$\frac{3π}{4}$)B.(2$\sqrt{3}$,$\frac{3π}{4}$)C.(2$\sqrt{3}$,π)D.(3,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知圓C的周長被y軸平分,且經(jīng)過點A($\sqrt{3}$,0),B(0,3).
(1)求圓C的方程;
(2)過原點O作兩條直線l1:y=k1x交圓C于點E(x1,y1)、F(x2,y2),作直線l2:y=k2x交圓C于點G(x3,y3)、H(x4,y4)(其中y2>0,y4>0),設(shè)EH交x軸于點Q,GF交x軸于點R(如圖)
①求證:$\frac{{k}_{1}{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}}$=$\frac{{k}_{2}{x}_{3}{x}_{4}}{{x}_{3}+{x}_{4}}$;
②求證:|OQ|=|OR|.(證明過程不考慮EH或GF垂直于x軸的情形)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=xlnx-$\frac{a}{2}$x2(a∈R).
(1)若a=2,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若a=0,求f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(3)若函數(shù)g(x)=f(x)-x有兩個極值點x1,x2,求證:$\frac{1}{ln{x}_{1}}$+$\frac{1}{ln{x}_{2}}$>2ae.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=x3-$\frac{9a}{2}{x^2}$+6x.
(Ⅰ)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對?x∈[1,4]都有f(x)>0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.定義在R上的奇函數(shù)f(x),當x≥0時,f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x∈[0,1)}\\{|x-3|-1,x∈[1,+∞)}\end{array}\right.$,則函數(shù)F(x)=f(x)-a,(0<a<1)的所有零點之和為( 。
A.1-2aB.2-a-1C.1-2-aD.2a-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知logx27=$\frac{3}{4}$,則x=81.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(Ⅰ)解不等式|3-2x|>5;
(Ⅱ)若?x∈[1,2],x-|x-a|≤1恒成立,求常數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案