精英家教網 > 高中數學 > 題目詳情
中,已知,邊上的一點,,,.

(1)求的大小;
(2)求的長.
(1);(2).

試題分析:(1)在中,由余弦定理得,最后根據的值及,即可得到的值;(2)在中,由正弦定理得到,從而代入數據進行運算即可得到的長.
試題解析:(1)在中,,由余弦定理可得

又因為,所以
(2)在中,
由正弦定理可得
所以.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

在△ABC中,角A,B,C的對邊分別為,且。
(1)求的值;(2)求c的值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在△ABC中,已知.求:
(1)AB的值;(2)的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知m=,n=,滿足
(1)將y表示為x的函數,并求的最小正周期;
(2)已知a,b,c分別為ABC的三個內角A,B,C對應的邊長,的最大值是,且a=2,求b+c的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在中,,,的中點, 求

(1)邊的長;
(2)的值和中線的長

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

中,分別是角的對邊.已知,,,則  ;  .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在△ABC中,內角A、B、C的對邊分別是a、bc,若,,則A=( )
A.30°B.60°
C.120°D.150°

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

中,,則此三角形有(   )
A.一解B.兩解C.無解D.不確定

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

△ABC的內角A、B、C所對的邊分別為a、b、c.若B=2A,a=1,b=,則c等于(  )
(A)2     (B)2      (C)     (D)1

查看答案和解析>>

同步練習冊答案