17.設(shè)f(x)=$\frac{2{x}^{2}}{x+1}$,g(x)=ax+5-2a(a>0),若對于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,則a的取值范圍是( 。
A.[4,+∞)B.(0,$\frac{5}{2}$]C.[$\frac{5}{2}$,4]D.[$\frac{5}{2}$,+∞)

分析 先對函數(shù)f(x)分x=0和x≠0分別求函數(shù)值,綜合可得其值域,同樣求出函數(shù)g(x)的值域,把兩個函數(shù)的函數(shù)值相比較即可求出a的取值范圍.

解答 解:∵f(x)=$\frac{{2x}^{2}}{x+1}$,
當(dāng)x=0時,f(x)=0,
當(dāng)x≠0時,f(x)=$\frac{2}{{(\frac{1}{x}+\frac{1}{2})}^{2}-\frac{1}{4}}$,
由0<x≤1,∴0<f(x)≤1.
故0≤f(x)≤1
又因為g(x)=ax+5-2a(a>0),且g(0)=5-2a,g(1)=5-a.
故5-2a≤g(x)≤5-a.
所以須滿足 $\left\{\begin{array}{l}{5-2a≤0}\\{5-a≥1}\end{array}\right.$,
∴$\frac{5}{2}$≤a≤4,
故選:C.

點評 本題主要考查函數(shù)恒成立問題以及函數(shù)值域的求法,是對知識點的綜合考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)X是一個離散型隨機(jī)變量,則下列不能成為X的概率分布列的一組數(shù)據(jù)是(  )
A.0,$\frac{1}{2}$,0,0,$\frac{1}{2}$B.0.1,0.2,0.3,0.4
C.p,1-p(0≤p≤1)D.$\frac{1}{1×2}$,$\frac{1}{2×3}$,…,$\frac{1}{7×8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=xlnx-x+\frac{1}{2}{x^2}-\frac{1}{3}a{x^3}$,令f(x)的導(dǎo)函數(shù)為y=g(x).
(I)判定y=g(x)在其定義域內(nèi)的單調(diào)性;
(II)若曲線y=f(x)上存在兩條傾斜角為銳角且互相平行的切線,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知B、C為單位圓上不重合的兩定點,A為此單位圓上的動點,若點P滿足$\overrightarrow{AP}=\overrightarrow{PB}+\overrightarrow{PC}$,則點P的軌跡為( 。
A.橢圓B.雙曲線C.拋物線D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)$f(x)=sinx•sin({x+\frac{π}{6}})$.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在銳角△ABC中,內(nèi)角A,B,C所對的邊分別是a、b、c,且$f(A)=\frac{{\sqrt{3}}}{4},a=2$,求△ABC的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知全集U=R,$A=\left\{{x\left|{-2<x<\frac{1}{2}}\right.}\right\},B=\left\{{x\left|{x≤0}\right.}\right\},C=\left\{{x\left|{x≥\frac{1}{2}}\right.}\right\}$,則集合C=(  )
A.A∩BB.U(A∩B)C.A∪(∁UB)D.U(A∪B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.等腰△ABC的底邊$AB=6\sqrt{6}$,高CD=3,點E是線段BD上異于點B,D的動點.點F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE.
(Ⅰ)證明EF⊥平面PAE;
(Ⅱ)記BE=x,V(x)表示四棱錐P-ACFE的體積,求V(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=2lnx+x2-2ax(a>0).
(Ⅰ)若函數(shù)f(x)在區(qū)間[1,2]上的最小值為0,求實數(shù)a的值;
(Ⅱ)若x1,x2(x1<x2)是函數(shù)f(x)的兩個極值點,且f(x1)-f(x2)>m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知直線3x-4y-6=0與圓x2+y2-2y+m=0(m∈R)相切,則m的值為-3.

查看答案和解析>>

同步練習(xí)冊答案