數(shù)列{an}的前n項和為Sn,若a1="1," an+1 =3Sn(n ≥1),則a6=(   )
A.3 ×44B.3 ×44+1
C.44D.44+1
A
時,由可得,所以。而,所以,故選A
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

由下面四個圖形中的點數(shù)分別給出了四個數(shù)列的前四項,將每個圖形的層數(shù)增加可得到這四個數(shù)列的后繼項.按圖中多邊形的邊數(shù)依次稱這些數(shù)列為“三角形數(shù)列”、“四邊形數(shù)列”,將構圖邊數(shù)增加到可得到“邊形數(shù)列”,記它的第項為,

1,3,6,10        1,4,9,16          1,5,12,22         1,6,15,28
(1)      求使得的最小的取值;
(2)      試推導關于的解析式;
( 3) 是否存在這樣的“邊形數(shù)列”,它的任意連續(xù)兩項的和均為完全平方數(shù),若存在,指出所有滿足條件的數(shù)列并證明你的結論;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義函數(shù),其中表示不超過的最大整數(shù),當時,設函數(shù)的值域為集合,記中的元素個數(shù)為,則使為最小時的是( ▲ )
A.7B.9 C.10D.13

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)在數(shù)列中,已知.
(1)求證:是等差數(shù)列;
(2)求數(shù)列的通項公式及它的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列滿足:,其中的前項和。
(1)求數(shù)列的通項公式;
(2)若的前項和,且對任意,不等式恒成立,求整數(shù)的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)已知數(shù)列是公差大于的等差數(shù)列,且滿足,.
(Ⅰ) 求數(shù)列的通項公式;
(Ⅱ)若數(shù)列和數(shù)列滿足等式),求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

數(shù)列滿足,則等于         (   )
      、                、

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在數(shù)列中,,為數(shù)列的前項和且,則
  ;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知數(shù)列{an}的前n項和Sn=2n+n-1,則a1+a3    ▲    

查看答案和解析>>

同步練習冊答案