設橢圓方程為,過原點且傾斜角為的兩條直線分別交橢圓于A、C和B、D兩點.(1)用表示四邊形ABCD的面積S;(2)當時,求S的最大值.
(1)四邊形ABCD的面積S=4| xy|;(2)
(1)設經(jīng)過原點且傾斜角為的直線方程為y= x tan,代入,
求得
由對稱性可知四邊ABCD為矩形,又由于,
所以四邊形ABCD的面積S=4| xy|
(2)當時, ,設t=tan,則S
,因為在(0,1]上是減函數(shù),所以
所以,當=時,
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分4分,第3小題滿分8分。
已知雙曲線C的中心是原點,右焦點為F,一條漸近線m:,設過點A的直線l的方向向量。
(1)求雙曲線C的方程;
(2)若過原點的直線,且al的距離為,求K的值;
(3)證明:當時,在雙曲線C的右支上不存在點Q,使之到直線l的距離為

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中,O為坐標原點,直線x軸于點C, ,,動點到直線的距離是它到點D的距離的2倍 
(I)求點的軌跡方程;
(II)設點K為點的軌跡與x軸正半軸的交點,直線交點的軌跡于兩點(與點K均不重合),且滿足 求直線EF在X軸上的截距;
(Ⅲ)在(II)的條件下,動點滿足,求直線的斜率的取值范圍 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

滿足的最大值為(     )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的一個焦點F1(0,-2),對應的準線方程為y=-,且離心率e滿足:,e,成等比數(shù)列.
(1)求橢圓方程;
(2)是否存在直線l,使l與橢圓交于不同的兩點M、N,且線段MN恰被直線x=-
平分.若存在,求出l的傾斜角的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓C:的左焦點為F,上頂點為A,過點A作垂直于AF的直線交橢圓C于另外一點P,交x軸正半軸于點Q,且
(1)求橢圓C的離心率;
(2)若過A、Q、F三點的圓恰好與直線l相切,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在同一坐標系中,方程a2x2+b2y2=1與ax+by2=0(ab>0)的曲線大致是      (   )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題








查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系中,定義點之間的“直角距離”為。若到點的“直角距離”相等,其中實數(shù)滿足,則所有滿足條件的點的軌跡的長度之和為

查看答案和解析>>

同步練習冊答案